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INTRODUCTION 

The field of molecular evolution owes most of its existence to the possibility 
of sequencing proteins and nucleic acids. Molecular sequences provide us 
with precisely comparable characters, observed at or near the level of the 
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522 FELSENSTEIN 

gene, which can be examined in diverse organisms. The amount of data is 
very large and rising rapidly. It enables us to work in two modes: we can 
either use our knowledge of the evolutionary history of the species to examine 
the mechanisms of evolution of the molecules, or we can use knowledge of 
the evolution of the molecules to infer the evolutionary history of the species. 
It is this latter, the inference of phylogenies, that is the concern of this review. 
However, the techniques used to do this are also relevant to the other task. 

In either mode, we make use of a model of the evolutionary process. The 
central model of molecular evolution is one of random evolutionary changes, 
occurring at a stochastically constant rate. It was first introduced by Zucker­
kandl & Pauling (144) in the form of the "molecular clock," which is the 
somewhat stronger assertion that the expected rate of change was the same in 
all lineages. Analysis of molecular data can often proceed without that strong 
an assumption. 

Kimura (81) provided a population-genetic rationale for a molecular clock 
by propounding the neutral mutation theory of molecular evolution (see also 
82) . This provided a unified theory accounting for both genetic polymorphism 
at the molecular level and change of the molecules through time. The theory 
does not rule out natural selection against deleterious mutants, and it argues 
that most differences in the rate of evolution between different molecules and 
different parts of the genome are accounted for by conservation of biological­
ly significant sequences. 

Theories explaining evolutionary change and polymorphism by natural 
selection have been less well developed, partly because there are so many 
different possible kinds of selection that it is difficult to choose between them. 
Gillespie (59 ,  60, 61, 63) has argued that randomly varying selection coeffi­
cients, rather than neutral mutations, account for most polymorphism and 
molecular evolution. 

The controversies between neutralists and selectionists have continued for 
20 years with no clear resolution, primarily due to the low resolving power of 
the data-natural selection many orders of magnitude weaker than we can 
detect in the laboratory can be effective in nature. From the point of view of 
this review, it does not matter whether nucleotide substitutions are neutral or 
selective. Our very inability to resolve the controversy over neutrality is an 
advantage when it comes to estimating phylogenies, since we can use the 
neutral mutation theory as if it were true, confident that for the data we can 
collect, other theories would make indistinguishably different predictions. 

ESTIMATING PHYLOGENIES 

Numerical methods for inferring phylogenies from molecular data have ex­
isted for over 20 years, but there is still much confusion in the literature about 
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PHYLOGENIES FROM SEQUENCES 523 

their assumptions and properties. For example, there is little coverage of them 
in textbooks of evolution or of molecular biology; that which exists is usually 
a brief and mechanical exposition of a particular method familiar to the 
author. As a result, the inference of phylogenies often seems divorced from 
any connection to other methods of analysis of scientific data. 

Nor are most journal articles much help: molecular evolutionists who use 
methods for inferring phylogenies do not engage in much discussion of the 
properties of the methods they use since they focus on the difficult task of 
collecting the data. It is not unusual to see papers presenting phylogenies with 
little more than the most perfunctory description of how they were obtained. 
This lack of detail would not be tolerated in presentation of the biochemical 
methods in the same papers: editors take no comparable care to see that the 
phylogenetic methods are carefully described. 

The most effective way of thinking about the inference of phylogenies is to 
adopt a statistical point of view, as with other kinds of data analysis. It is then 
seen simply as making an estimate of an unknown quantity, in the presence of 
uncertainty, and using a probabilistic model of the evolutionary process. 
Viewing the process in this way immediately emphasizes a limitation of most 
current discussion of methods for inferring phylogenies. They make a single 
estimate-a point estimate-but are not designed to tell us what other 
phylogenies might also be acceptable. This is partly because of the difficulty 
of doing so and partly because some exponents do not believe that a statistical 
framework is appropriate. 

The importance of making some assessment of the statistical variability of 
the estimates of phylogenies is underscored by two recent studies. Miyamoto 
et al (95) studied 7.1 kB of DNA sequence from the I/171-globin region in apes 
and human and found that the most parsimonious tree had chimpanzees and 
humans as most closely related. However, this conclusion could be based on 
only l3 positions at which there were "phylogenetic ally informative" patterns 
of nucleotide substitution or deletiOn/insertion events. Of those, eight backed 
a human-chimpanzee relationship, three a chimpanzee-gorilla relationship, 
and two a human-gorilla relationship. They concluded that their data "provide 
strong evidence . . . that human and chimpanzee are more closely related to 
each other than either is to gorilla." This conclusion is mandated if one 
adheres to the school of "phylogenetic systematics," or "cladism," which 
focuses on the most parsimonious tree to the exclusion of any statistical 
interpretation. An accompanying news article (90, p. 273) quotes Goodman 
as saying "if we had only our dataset, the question of a human-chimpanzee 
association wouldn't be decisive, and maybe putting all the datasets together 
still would leave some room for doubt." There is a discrepancy in the firmness 
of their conclusion in these two statements. Perhaps this is inevitable if one 
excludes statistical analysis as irrelevant but still has the good biological sense 
to regard the conclusions as uncertain. 
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524 FELSENSTEIN 

Field et al (51) analyzed 22 animals for sequences of 18S rRNA, using a 
distance matrix method with distances derived from the sequences .  They 
estimated the phylogeny of the metazoa, coming to suggestive and con­
troversial conclusions (for example, that coelenterates are derived from pro­
tists independently of other metazoans). However, many of these conclusions 
are based on short internal branches of the tree, whose reality can only be 
judged if we have some measure of the variability of length of these branches. 
Field et al (51) are concerned about this, saying that "there are no simple 
measures of reliability for the position of given branch points" but arguing 
that their conclusions are reliably indicated by reproducibility of the branch­
ing order as different sets of species are used to make the tree. Assessment of 
the reliability of the results is thus central to any appreciation of the meaning 
of this study. 

This review therefore focuses on the methods for assessing the reliability of 
phylogenies from molecular sequences , after describing briefly the three 
major families of methods for inferring phylogenies. 

METHODS FOR INFERRING PHYLOGENIES 

The three major families of methods for inferring phylogenies are the parsi­
mony and compatibility methods , the distance methods , and maximum likeli­
hood methods . Most other methods fit under one of these headings. 

Parsimony and Compatibility Methods 

PARSIMONY If each site in a set of sequences has changed only once in the 
evolution of a group, then the newly-arisen base will be shared by all species 
descended from the lineage in which the change occurred. If this were the 
case at all sites, then the sets of species having the new bases would be either 
perfectly nested or disjoint, never overlapping unless one set of species was 
included in the other. It would be possible to erect a tree on which we could 
explain the evolution of the group with only a single change at each site. This 
can be done by inspection of the sets of species defined at each varying site. If 
some of these sets of species overlap without being nested, then there is 
conflict between the information provided by different sites. Most of the 
interesting issues in phylogeny reconstruction are in how to resolve these 
conflicts . 

A natural way is to count the minimum number of base substitutions that 
are required for each proposed tree, (leaving aside for the moment the issue of 
insertions and deletions). That tree requiring the fewest changes is preferred. 
This is the parsimony criterion. It was first introduced, in the context of 
estimating phylogenies from gene frequencies , by Edwards & Cavalli-Sforza 
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PHYLOGENIES FROM SEQUENCES 525 

(17, 18), who called it the "method of minimum net evolution. " The word 
"parsimony" was first associated with it when Camin & Sokal (6) published 
an influential description of this method for discretely coded morphological 
characters. Eck & Dayhoff (16) described the first application to molecular 
sequences. The algorithms for counting changes among states were given by 
Kluge & Farris (85; see also 28) on a linear or branched scale, and by Fitch 
(53) for nucleotides among which changes can occur from any one to any 
other. 

The parsimony method is usually justified by the school of "phylogenetic 
systematics" by asserting that the count of extra state changes on a tree counts 
the number of ancillary hypotheses that must be erected to explain evolution 
in the group, and by identifying the criterion with William of Ockham' s  
principle of parsimony, "Occam's Razor" (142). Along with this view goes 
the assertion that the use of parsimony requires no substantive assumptions 
about evolutionary processes, a position that when viewed from the stand­
point of statistics, is questionable at best. 

Normally, parsimony methods applied to nucleotide substitutions count 
only base substitutions. Sankoff et al (118) applied a method, later described 
by Sankoff & Rousseau (120) and Sankoff (119), that performs alignment of 
sequences at the same time as it estimates the phylogeny by minimizing a 
weighted count of substitutions and deletion/ insertion events. A more recent 
description of the class of methods is given by Sankoff & Cedergren (121) . 
This process is computationally intensive but will receive more attention 
when sequence aligners realize, as they must, that multiple-sequence align­
ment is best carried out with explicit reference to the phylogeny and that one 
cannot simply treat all sequences symmetrically, when some may be near­
duplicates of others. The realization of this will have a large impact on 
multiple-sequence alignment and may cause some embarassment when it is 
noted that David Sankoff and his colleagues understood the matter clearly in 
1973. 

The particular case of protein sequences has caused some difficulties. In 
Eck & Dayhoff's original parsimony method for protein sequences (16), they 
allowed any amino acid to be replaced by any other. Subsequently Dayhoff & 
Eck (14) used a set of weights that reflected the empirical probabilities of 
replacement for each possible change. Fitch (53) suggested counting not the 
number of amino acid replacements but the underlying number of base 
substitutions implied by the amino acid sequences. Because of the complexity 
of the mapping from codons to amino acids, this is not simple to compute. 
Algorithms for counting the number of base substitutions have been given by 
Moore et al (97), Moore (98), Fitch (54), Fitch & Farris (55), and Moore 
(99). In my own program for protein parsimony in the PHYLIP package, I 
have preferred to count only those base substitutions that also change the 
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526 FELSENSTEIN 

amino acid, under the assumption that the synonymous changes are sub­
stantially more probable and should thus be deemphasized. This is more 
easily accomplished than counting all base substitutions. 

COMPATIBILITY . A method closely related to parsimony is compatibility 
analysis (usually called a "clique method" by those who dislike it) . It uses a 
different criterion for resolving conflict among characters. A character is 
compatible with a phylogeny if its evolution can be explained without assum­
ing that any state arises more than once. Thus a site that shows three bases, A, 
C, and T, is compatible with a phylogeny if the observed data could arise with 
only two nucleotide substitutions. The compatibility method finds that tree on 
which the maximum number of sites are compatible with the tree. 

The compatibility criterion was first proposed for discrete two-state mor­
phological characters by Le Quesne (89). Estabrook & Landrum (23) and 
Fitch (56) showed how to determine whether two nucleotide sites are compat­
ible with each other, in the sense that there must exist a tree on which they can 
both evolve with no extra changes. However, Fitch (56) also showed that a set 
of sites that are all pairwise compatible may not be jointly compatible, in that 
there may not exist one tree on which all can evolve without extra changes. 
This is in contrast to some classes of multistate morphological characters for 
which Estabrook et al (24, 25; see also 26) proved that when characters are all 
pairwise compatible, they must be jointly compatible, and the tree fitting all 
of them can be found very easily. 

Although the absence of this pairwise compatibility theorem for nucleotide 
sequences makes it somewhat harder to find the tree with the most sites 
compatible with it, compatibility methods are no harder to use than parsimony 
methods. It should be apparent that the two classes of methods are closely 
related. although some authors. e.g .  Wiley (142). have felt otherwise. 

Distance Matrix Methods 

Distance methods. the second major category, fit a tree to a matrix of pairwise 
distances between the species. For nucleotide sequence data the distances 
might. for example , be calculated from the fraction of sites different between 
the two sequences. The phylogeny makes a prediction of the distance for each 
pair as the sum of branch lengths in the path from one species to another 
through the tree. A measure of goodness of fit of the observed distances to the 
expected distances is used, and that phylogeny is preferred which minimizes 
the discrepancy between them as evaluated by this measure. There is a 
widespread misconception that distance methods assume a molecular clock. 
mostly because molecular evolutionists using these methods have also tended 
to make such an assumption and invoke it as the reason why their methods 
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PHYLOGENIES FROM SEQUENCES 527 

work. It is possible to either assume or not assume a molecular clock when 
using distance methods. 

Fitch & Margoliash (52) introduced the first distance matrix method, and 
Cavalli-Sforza & Edwards, (8) had independently produced another. Both 
were least squares methods. If the Vi} were the observed distances and the di} 
the expected distances computed from the tree, then the measure of lack of fit 
was 

� wij(Dij - dij)2, 
i,j 

which is a weighted least squares measure. The weights wi} were l ID/ for 
Fitch & Margoliash 's  method, and 1 for Cavalli-Sforza & Edwards's method. 
These represent a different weighting of discrepancies for large and small 
distances. 

Many other distance matrix methods have been introduced. Some such as 
Farris's (30) "distance Wagner method," Li 's  (91 )  method, Tateno et aI's 
( 1 35) "modified Farris method," and Saitou & Nei 's  ( 1 16) "neighbor joining 
method" are not defined in terms of a measure of lack of fit, but only as the 
result of following a certain algorithm which joins species and calculates 
branch lengths. The algorithms involved are designed to yield an exact result 
when there is a tree that perfectly fits the data, but it is less easy under this 
approach to see how different kinds of discrepancies from a perfect fit are 
weighted. This makes statistical analysis of the properties of these methods 
particularly difficult. 

Chakraborty ( 1 2) has taken the opposite tack and derived a least squares 
method from a statistical model , one which tries to take into account the 
variances of the distances and the correlations between them, when protein 
sequences are used. Hasegawa et al (64, 67) have derived a distance method 
from statistical properties of nucleic acid sequences. Hogeweg & Hesper (70) 

have derived a distance from pairwise alignments of molecular sequences and 
have inferred phylogenies by using this in a distance matrix method. This 
differs from the approach of Sankoff et al (1 18) in that there need not be any 
consistency between the alignments for different pairs of species-Hogeweg 
& Hesper' s method is thus necessarily more approximate. 

The widely used UPGMA method, or "average linkage method" (Sokal & 
Sneath, 129) of constructing a tree from a distance matrix is also defined as 
the result of applying a certain algorithm. That algorithm would work per­
fectly only if the data were generated by a clocklike evolution-if the data 
were an exact fit to a nonclocklike tree the UPGMA method could give 
erroneous results (13, 29, 96). The UPGMA method is, however, not as 
arbitrary as might first seem. Farris (27) and Chakraborty ( 12) have pointed 
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528 FELSENSTEIN 

out that it assigns the branch lengths (or node levels) so that the Sum of 
squares of differences between observed and expected distances is minimized. 
The topology is found somewhat arbitrarily as a result of the clustering 
algorithm rather than by an explicit search among alternatives, but otherwise 
the relationship between versions of least squares that assume a clock and the 
UPGMA method is a close one. 

Likelihood Methods 

M aximum likelihood is the most general method of deriving statistical es­
timates. In essence it is quite simple-one has a model (M) and data (D) . The 
likelihood of a tree (T) is the probability of the data given the tree and the 
model , P(D; T, M) , considered as a function of the tree. The probability of all 
possible sets of data must add up to one, but when the data is held constant 
and the tree is varied, the different values of P(D; T, M) need not add up to 
one and are called l ikelihoods rather than probabilities. The maximum l ikeli­
hood method simply chooses that tree T which maximizes the l ikelihood, thus 
maximizing the probability that the observed data would have occurred. 
Likelihood methods are not as widely known as they ought to be, because the 
computation of the likelihood frequently involves taking products of a large 
number of quantities or sums of logarithms. Before the existence of comput­
ers likelihoods were hard to compute, and methods based on them were 
regarded as arcane and impractical. They have only recently begun to make 
their way into the elementary statistics texts studied by biologists. 

It was inevitable that maximum likelihood would be applied to estimating 
phylogenies. Edwards & Cavalli-Sforza ( 18) made the first attempt, with gene 
frequencies as the data. The first application to molecular sequences was by 
the famous statistician Jerzy Neyman ( 105), who used a simple model of 
symmetric change among amino acids or nucleotides, with changes occurring 
randomly and independently at different sites. This was closely similar to the 
model implicit in Jukes & Cantor's (75) formula relating the time of di­
vergence of two species to the probability of net change in a base. It ignores 
differences in the rate of transitions and transversions, and it does not allow 
for different frequencies of the four bases or different rates of change at 
different sites. Neyman investigated only the case of data from three species. 

Kashyap & Subas (77) wrestled with the problem of combining Neyman's  
three-species trees for all triples of  species in a data set into one larger tree. 
Their methods were somewhat ad hoc. I gave (38) computationally effective 
methods of computing the likelihood for a tree with an arbitrary number of 
species, and of finding branch lengths that maximize the l ikelihood. The 
model used allows unequal base composition and does not assume a molecu­
lar clock. Morc recently it has been extended to allow differences between the 
rates of transition and transversion and to allow different prespecified rates of 
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PHYLOGENIES FROM SEQUENCES 529 

change at different sites (J. Felsenstein, in preparation). Hasegawa and his 
colleagues have applied maximum likelihood to a number of nucleic acid 
sequence data sets (65, 66, 68). 

B ishop and Friday (3a) have used several models of base substitution to 
construct a maximum likelihood method for inferring rooted phylogenies 
under the assumption of a molecular clock. They have applied these to some 
published nucleotide sequencies on mammals, and discuss extensively some 
of the changes that would h ave to be made in models to make them more 
realistic. 

B arry & Hartigan (3) have developed a maximum likelihood method 
which, instead of assuming that the parametric form of the matrix of base 
changes is known in advance, estimates it from the data. This turns out to 
simplify computations considerably. The disadvantage is that it allows too 
great a flexibility in the probabilities of change between specific bases, so that 
what it gains in flexibility it may lose in power from having to estimate more 
parameters. Processes of base change probably do not differ much in related 
species, a factor Barry & Hartigan's  method does not take into account. On 
the other hand, methods such as my own assume that the processes do not 
change at all in different parts of the tree . The truth must lie somewhere in 
between. 

Saitou (117) has derived conditions under which maximum likelihood on a 
clocklike tree will give the correct results, and compared those to conditions 
for parsimony and UPGMA methods. For three and four species the likeli­
hood method is found to behave similarly to UPGMA. It is not clear whether 
this will generalize to more species. 

It is worth noting here that maximum likelihood methods have also recently 
been applied to restriction sites data (76, 15 ,  102 ,  92, 124) where they are 
needed to correctly account for the relative rates of parallel loss and gain of 
sites. 

STATISTICS AND THE JUSTIFICATION OF METHODS 

It is unsatisfactory to have several competing approaches if it is not, un­
derstood how they differ in their assumptions, and thus when one ought to 
prefer one to another. The two main approaches to j ustifying phylogenetic 
methods are the hypothetico-deductive and the statistical. The former has 
been applied mostly to parsimony methods, under the belief that William of 
Ockham's principle that entities ought not to be multiplied unnecessarily 
(called "Occam's razor") is directly related to parsimony, which is said to 
measure the number of hypotheses that must be erected to explain a data set. 
That in tum is related, by authors such as Wiley (141, 142), to Popper' s  
hypothetico-deductive model of falsification of scientific hypotheses. The 
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530 FELSENSTEIN 

central flaw in this argument is that falsification is not absolute-when Wiley 
(141) says, "the phylogenetic hypothesis which has been rejected the least 
number of times is to be preferred over its alternates," he is trying to stretch 
the original Popperian argument to cover parsimony, which may have every 
possible phylogeny rejected by requiring extra changes of state in one or 
another character. Rej ection then inevitably is not absolute, and statistical 
concepts must be admitted through the back door. 

The other, preferable way to justify methods is to consider them as methods 
of statistical inference and investigate their statistical properties. The biolo­
gical assumptions of a method may be found by asking which ones endow it 
with reasonable statistical properties. The issue is subtle because statisticians 
do not agree on the most important properties of a statistical method. 

Consistency 

A statistical estimation method is consistent if it approaches the true value of 
the quantity as larger and larger amounts of data are accumulated. For 
example, the mean of a sample from a normal distribution gets c loser and 
closer to the quantity it estimates, the true population mean, as the number of 
data points increases. Statisticians differ on how fundamental a property 
consistency is: B ayesians and advocates of likelihood relegate it to a lesser 
role while most others consider it a fundamental desirable property of an 
estimation method. 

Maximum likelihood methods are usually consistent, with the exception of 
certain cases where the number of quantities being estimated rises at least at 
the same rate as the number of data points. In the case of phylogenies, the 
parameters being estimated are the branch lengths of the tree but may also 
include the states of hypothetical ancestors that occur at interior nodes of the 
tree. If only branch lengths are estimated, the number does not change as 
more nucleotide sites are considered. However, if we are also estimating the 
nucleotide states in the interior nodes of the tree, the number rises pro­
portionately to the length of sequences considered, and the estimate may be 
inconsistent. This will become relevant when we discuss the inconsistency of 
parsimony and compatibility methods. 

CONSISTENCY AND DISTANCE MATRIX METHODS Distance matrix 
methods are consistent when the distances are derived from sequences and 
certain conditions are met. We expect that as the number of sites sequenced 
rises, the distances measured approach more and more closely to their ex­
pected values. If the expected values are the sums of the branch lengths 
through the true tree from one species to another, then in the limit there will 
be a perfect fit between the tree and the distance matrix, and the method will 
be consistent. 
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PHYLOGENIES FROM SEQUENCES 53 1 

We must transform the distances so that their expected values are equal to 
the total branch lengths intervening between two species. This is an important 
criterion often overlooked when distance matrix methods are applied. Chakra­
borty (12) made an effort to correct the distances derived from protein 
sequences to achieve linearity. Olsen (106, 107) also has carried out such a 
correction when using distances derived from nucleotide sequences. Farris 
(31 , 33 , 34) and I (43, 46) have discussed different options for making this 
correction, either transforming the distances or using a nonlinear least squares 
method. 

Simple use of a Fitch-Margoliash or other least squares method with a 
distance that measures the fraction of nucleotides different between sequences 
is inconsistent. The expected distance between two species rises at first nearly 
proportionally to the intervening branch length, but as we consider longer 
paths through the tree we expect more and more cases in which one substitu­
tion overlays or reverses another. For example, when we expect 10% nucleo­
tide sequence difference between nodes A and B on a tree, and a further 1 0% 

between B and C, then under a simple symmetric model of change among 
four nucleotides (such as that of Jukes & Cantor, 75) we expect that 1 % of the 
sites have been changed twice between A and C. One third of these double 
changes will cause reversion to the original nucleotide, so that the net 
difference between the sequences of A and B is expected to be not 20% (as 
would be predicted by adding up the branch lengths) but 19.67%. Thus the 
branch lengths will not be additive: the expected distances will be less than the 
sum of the branch lengths, particularly when that sum is large. To the extent 
that a distance method is trying to fit the tree to both long and short distances, 
it will make the branches too short as a result of this problem of overlaid 
substitutions. 

This may not seem like a very serious problem with the example given, but 
it becomes severe with larger differences between sequences. As two DNA 
sequences become very far apart in the tree, the branch length between them 
should rise towards infinity, but their sequence difference cannot rise above 
100% , and in fact will approach 75% under the Jukes-Cantor assumptions. 
With more realistic models of nucleotide substitution, involving unequal 
frequencies of the four bases, the problem becomes even worse. Branches in 
the tree may be substantially shortened in order to have the branch length 
between less closely related species fit a distance of 75% which actually 
reflects much larger amounts of nucleotide substitution. 

The objections raised by Farris (3 1 ,  33, 34) to the use of distance matrix 
methods consist in part simply of pointing out this problem. In my responses 
(43 , 46) I have agreed that this is potentially a problem, while emphasizing 
that there are ways to correct it. The remainder of Farris's critique is that the 
branch lengths estimated may not be achievable. Thus, we may estimate a 
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532 FELSENSTEIN 

branch length of 0.17 in a case in which the data consists of sequences of 
length 50 nucleotides, while it is impossible that the actual sequences at the 
two ends of that branch differed by exactly 1 7%. I have pointed out (43 , 46) 

that this causes no problem if we think of making a statistical estimate of the 
tree . The branch lengths are expected differences between two sequences; the 
expected difference is a weighted average of the distance over all possibilities, 
and as such need not be a quantity that is equal to any of the actual 
differences. Farris' s objections do not apply if one adopts, as I am urging that 
we do, a statistical inference approach to inferring phylogenies. 

CONSISTENCY, PARSIMONY, �ND COMPATIBILITY If the issue of con­
sistency of distance methods is complicated, the issue with regard to parsi­
mony and compatibility methods is positively baroque. It interacts with the 
logical justification of parsimony and with the question of when parsimony 
and compatibility methods are equivalent to maximum l ikelihood methods. 

Cavender (9) and I (36) discovered a simple case in which parsimony and 
compatibility methods would be inconsistent. The example involves a four­
species case with unequal rates of evolution among two l ineages. The sites are 
assumed to change independently. The original case involved two-state 
characters, but an equivalent example can be constructed for four-state 
characters such as nucleic acid sequences (38). The topology of the unknown 
true tree is of the form «A, B), (C, D)) .  The branches leading to species A, 
and D are long, and all the others are short, where by length we mean not time 
but expected amount of change, as no molecular clock is assumed. Random 
change along this tree, in accordance with the branch lengths, generates many 
sites that have parallel changes in the l ines leading to A and D, as one quarter 
of cases in which both of those lines change result in the same nucleotide 
arising in both of the l ineages. 

If the internal branches of the tree are short enough, it generates fewer sites 
which are "phylogenetic ally informative" in the sense of having one base in 
common between species A and B ,  and another in common between C and D. 
The upshot is that we expect to have more sites providing false evidence that 
the tree topology is (A, D), (B,  C) than provide evidence of the true topology 
(A, B), (C, D). As we collect more and more sites, the chance that a 
parsimony method will chose this particular wrong topology becomes h igher 
and higher, ultimately approaching 100%. With four species there is no 
difference between parsimony and compatibility methods, which in these 
cases always give the same results; thus, this is a counterexample to the use of 
either parsimony, or compatibility . 

I was able (36, 41 )  to derive conditions for some particular patterns of 
branch length, showing for what combinations of their lengths parsimony 
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PHYLOGENIES FROM SEQUENCES 533 

methods would be inconsistent. There was a trade-off between inequality of 
the expected rates of evolution in different branches of the tree and the overall 
rates of change: with less change one needs more inequality of rates to have 
inconsistency, whereas with clocklike evolution no combinations of branch 
lengths led to inconsistency. With grossly unequal lengths of branches, 
inconsistency could occur even with little expected change. Hasegawa & 
Yano (66) carried out computer simulations of the evolution of DNA sequ­
ences and verified these patterns. 

Hendy & Penny (69) have developed a clever method using matrix algebra 
to generate the expected frequencies of different patterns of characters, 
including some models of nucleotide sequence change for cases with more 
species. They could show that the same phenomena occurred in some five­
species cases, but with a surprising difference. They found the same pattern 
that "the long branches of the tree attract each other," causing inconsistency 
when the long and short branches are sufficiently different in length. But they 
were able to find cases in which parsimony (and incompatibility as well) were 
inconsistent. even with a perfect molecular clock, which disproved my con­
jecture of a trade-off between clockness and inconsistency. Apparently parsi­
mony and compatibility are even less well-behaved than I had inferred. The 
two patterns that continued to hold up were that the inconsistency arose when 
branch lengths were unequal, and the smaller the overall rate of change the 
more unequal the branch lengths need to be to cause inconsistency. 

An intriguing modification of parsimony methods is proposed by Hendy & 
Penny (69). They suggest that instead of counting changes of state, we should 
use the number of observed changes in each branch of the tree to reconstruct 
the estimated actual number of changes. Thus if a branch shows l O  changes 
out of 20 characters, we can compute (for a simple four-state nucleic acid 
model) how many substitutions have not been seen because they have been 
reversed or overlaid by other substitutions. They suggest that trees be scored 
according to this augmented number of substitutions. In their consistency 
calculations they found that this augmented parsimony method was always 
consistent, even when ordinary parsimony was not. This is an interesting 
approach to avoiding the inconsistency problem entirely. There is as yet 
no proof that it always does avoid the problem, and there may be ambigui­
ties as to where changes occur in the tree which affect the augmentation cal­
culation. The method may not yet be fully developed, but it is certainly 
promising. 

ARGUMENTS AGAINST THE COUNTEREXAMPLES The examples of the in­
consistency of parsimony and compatibility have generated considerable 
controversy, because if they are accepted they create a problem for the 
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534 FELSENSTEIN 

hypothetico-deductive approach to inferring phylogenies. Farris (32) has 
pointed to the unrealistic nature of the model under which the inconsistency is 
derived-independently evolving characters, all evolving at the same average 
rate symmetrically among four (or two) states . His line of argument is 
unusual: "This is not to say that parsimony requires no assumptions at all; i t  
presumes, one might say, that Felsenstein's models are unrealistic. But  as that 
assumption seems generally agreed upon, that is not much of a criticism of 
parsimony" (32). The difficulty with his argument is that it implicitly pre­
supposes that the special assumptions of the model are responsible for the 
inconsistency, and that a more realistic model would not be inconsistent. 
There is in fact no evidence for that whatsoever; there is no reason for 
believing that the inconsistency would not also occur in more realistic models. 
In fact, it can easily be shown that variation of rates of evolution among 
characters and correlation of the characters in some patterns will leave the 
inconsistency unchanged. Farris's argument therefore is insufficient reason 
for ignoring the possibility of inconsistency. His assurance that no con­
troversial assumptions are involved in using parsimony is wrong-there is in 
fact no guarantee that parsimony will work well in any realistic case. 

Sober ( 1 27, 47) has taken me to task, with considerable justification, for 
overstating the implicit assumptions of the parsimony methods by saying that 
they require evolutionary rates (as reflected in the expected amounts of 
evolution in branches) to be small or nearly equal in different l ineages for 
parsimony to be consistent. Hendy & Penny's (69) work shows that for five 
species the conditions for parsimony to be consistent seem even more strin­
gent than my projection based on four species. Nothing general is known 
about the conditions for consistency for more general models. 

Carpenter (7a) summarized the state of affairs after the debates between 
Sober and myself by saying that Sober has "at least wrung from Felsenstein 
the retraction of his claim that parsimony necessarily assumes low rates of 
evolution. " I see the matter differently. We know what the conditions are for 
inconsistency of parsimony for some particular four- and five-species models, 
and these suggest that the problem may extend well beyond those cases. Is 
this reason for complacency on the part of users of parsimony methods? None 
of the advocates of the position that parsimony has no controversial assump­
tions has presented any general proof that this is so. 

Likelihood as Justification 

LIKELIHOOD JUSTTFTCA TIONS FOR PARSIMONY Sober (126, 127, 128, 47) 
has taken a different tack, rejecting the notion of consistency itself as a 
fundamental property a statistical estimator ought to have. There are statistical 
positions (notably Bayesian and l ikelihoodist positions) in agreement with 
him in this, so that the matter unfortunately involves the philosophical 
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PHYLOGENIES FROM SEQUENCES 535 

foundations of statistics, which biologists are unlikely to resolve on their own. 
Many statisticians, probably a majority, accept consistency as a fundamental 
desirable property of an estimation method, and I think many biologists agree. 

Sober argues against the relevance of the consistency property because he is 
defending the use of the parsimony criterion. It is fair to ask what positive 
properties of parsimony a supporter would invoke . Sober's advocacy is based 
on his assertion that parsimony is the same, under noncontroversial assump­
tions, as maximum likelihood. His basis for advocating parsimony i s  a 
likelihoodist position that takes maximum likelihood as fundamental, regard­
less of whether the resulting estimator is consistent. This is a well-known 
statistical position, so again biologists are unlikely to resolve the matter by 
themselves. 

Sober's position depends on some proof that parsimony methods are gener­
ally identical to maximum likelihood methods. He has presented such a proof 
( 126, 1 27) in three-species cases with two-state characters, but it contains a 
step in which a particular internal branch length in the 3-species trees being 
compared is assumed to be identical . Recently, he retracted this proof as 
flawed (47, 128). At present we have no general proof of a correspondence 
between likelihood and parsimony, so that even if one takes a likelihoodist 
position and rejects the relevance of the consistency property, there is no clear 
guide as to what method of phylogenetic inference is to be used, other than 
direct use of maximum likelihood. 

I have presented one proof (35) that when rates of evolution per unit branch 
length are taken towards zero with the lengths of branches held constant, then 
for any two trees and with a fairly general model of change among character 
states, the tree of higher l ikelihood will be the one with the fewer changes of 
character states. This proof establishes an equivalence between l ikelihood and 
parsimony, but only for cases with low expected amounts of character state 
change. This at least makes intuitive sense: if we expect very l ittle change, 
then that tree which requires the fewest of these improbable events will 
provide the most credible explanation of the data. The problem with using this 
argument as a justification of the use of parsimony methods is that in many 
data sets we see rates of evolution that are not small .  

COMPATIBILITY AND LIKELIHOOD In the studies showing that parsimony 
methods can be inconsistent, the cases investigated do not discriminate 
between parsimony and compatibility-since the two methods always yield 
the same result in those four- and five-species cases, the proof of in­
consistency applies equally to compatibility methods. The debate has centered 
around parsimony since it is in more widespread use, and the school of 
systematists most committed to a hypothetico-deductive approach to 
phylogenetic inference identifies that approach with parsimony. 
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536 FELSENSTEIN 

When we consider instead the circumstances under which compatibility and 
likelihood methods are identical , we get a slightly different answer than we do 
for parsimony, and the differences illuminate the assumptions of the parsi­
mony and compatibility methods. In my examination of sufficient conditions 
for likelihood to be identical to parsimony when there are two character states 
(37) I investigated a variety of parsimony methods, including Dollo, Camin­
Sokal, and polymorphism parsimony, and also compatibility methods . For 
compatibility to be identical to likelihood, it turns out that the homoplasy 
(parallelism or convergence) should not arise from random evolutionary 
changes occurring at a slow rate in all characters, but rather that most 
characters should have a very low rate of change and a few should have a high 
rate of change or of misinterpretation. 

Compatibility methods tend to ignore the information from those characters 
that do not fit a phylogeny, although they do consider various possibilities and 
try to ignore as few characters as possible. If we assume that all characters 
will change at a low rate and hence tend to fit the true phylogeny, except for a 
few that will be almost useless because of misinterpretation or high rates of 
evolution, this behavior becomes explicable.  Once a character has exhibited 
more than one change on a tree , it becomes probable that it is one of these 
misinterpreted or rapidly evolving characters, whose distribution should have 
little or nothing to do with the phylogeny. These characters are expected to be 
rare , so that we should assume as few of them as possible. 

Thus the different treatment by parsimony and compatibility methods of 
characters that do not fit the tree is different in a way that corresponds to a 
diffferent assumption about the source of the homoplasy . It is natural to 
suggest that compatibility methods implicitly assume this sort of pattern of 
evolutionary rates, but as with the case of parsimony, we can only say that 
they assume this in the few cases that have been investigated, without having 
a prooof of what they assume in general. 

An interesting issue that arises with use of compatibility methods on 
nucleotide sequences is to determine when we are to consider a site to be 
incompatible with a tree . The usual definition is that if each nucleotide state 
arises no more than once, it is compatible. However, all the l ikelihood 
arguments suggest otherwise-that two changes in the same site, even if they 
lead to different nucIeotides, should be counted as evidence that this site has a 
high rate of change and, hence , should be ignored in making the tree . When 
this is used as the criterion for compatibility, the pairwise compatibility 
theorem can be used and construction of trees becomes much more 
straightforward. As far as I know this approach has never been used. 

CHARACTER WEIGHTING AND LIKELIHOOD I have discussed (39) the 
assumptions of compatibility and parsimony III the context of character 
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weighting. When different characters had different but small rates of evolu­
tion, it could be shown that a weighted parsimony method was identical in 
result to a maximum likelihood method, the weights being related to the 
negative logarithms of the rates of character change. Thus the faster a 
character is known to change, the less weight it should be given. The lower 
the rates of change the more equally the characters should be weighted, so that 
un weighted parsimony methods may implicitly assume a low rate of change . 

If one also assumed that a small fraction of the characters evolved at such a 
high rate as to be completely devoid of information, then a parsimony method 
with a threshold emerged as equivalent to maximum likelihood. If the proba­
bility that a character has a high rate of change is the same as the probability 
that it has four changes of character state on the tree, then the threshold should 
be set so that in each character we count the number of steps up to four, 
counting four for that character no matter how many more steps there are. For 
these two-state characters, a threshold value of two turns out to be equivalent 
to using a compatibility method. A character is then simply evaluated as to 
whether it has more than one change, and the minimization of the count of 
changes modified by the threshold is identical to maximizing the number of 
characters that can be interpreted as uniquely derived. Thus we have a family 
of methods that smoothly connect parsimony and compatibility , showing that 
they are indeed closely related. A similar family was presented by Farris 
(27a) , although without a likelihood justification. He (32) has commented on 
these issues at length . Another a posteriori weighting method was developed 
by Penny & Hendy ( 1 1 0) .  

STATISTICAL TESTS OF PHYLOGENIES 

So far, all of the discussion has been in terms of consistency of the point 
estimate of a phylogeny, when the estimate is, or is not, identical to a 
maximum likelihood method, and what this may mean about the implicit 
assumptions of the methods. The question of how to obtain confidence 
intervals and carry out statistical tests is in a relatively primitive state by 
comparison, but it is of greater practical importance to the molecular evolu­
tionist. We cover here the suggestions that have been made for tests and 
confidence intervals based on parsimony methods , distance methods, and 
likelihood methods , and then data resampling approaches such as bootstrap 
methods. 

Tests Based on Parsimony Methods 

CAVENDER
'

S CONFIDENCE INTERVAL The pioneering investigations of 
how confidence intervals could be constructed based on parsimony methods 

A
nn

u.
 R

ev
. G

en
et

. 1
98

8.
22

:5
21

-5
65

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

N
ev

ad
a 

- 
R

en
o 

on
 1

1/
14

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



538 FELSENSTEIN 

have been described in papers by Cavender (9, 1 0). He examined the four­
species case with characters having two states. I have reworked his calcula­
tions (41) for the case of four states, such as nucleotide sequences. Cavender 
used as his statistic the number of differences in substitutions between the 
most parsimonious phylogeny and its next best competitor. He asked for what 
true phylogeny there would be the most evidence favoring the wrong topolo­
gy, as judged by parsimony. He discovered the inconsistency problem, that in 
the worst case all "phylogenetic all y  informative" characters might be ex­
pected to favor the wrong topology. 

In the nucleotide sequence case, with a simple symmetric model of base 
change, it turns out that 3/ 1 6 of all characters would be expected to be 
"phylogenetic ally informative" and favor the wrong tree (4 1 ) .  In the original 
two-state case Cavender found the corresponding number to be 1 13 .  Each of 
these "phylogenetic ally informative" characters creates a one-substitution 
difference between the wrong tree and the correct one. One can only conclude 
in favor of the most parsimonious tree if the evidence is stronger than that. 
Cavender therefore asked whether the number of steps favoring the most 
parsimonious tree over its next best competitor was significantly greater than 
one third of the number of characters. For the nucleic acid case one asks 
whether it is significantly greater than 3/16 the number of sites. Note that it is 
the total number of sites that is used, not the "phylogenetically informative" 
ones, 1 00% of which can favor the wrong tree in the worst case. 

Table I shows the results recalculated for the nucleic acid sequences case. 
The third column gives the significant number of steps expressed not in terms 
of all sites but in terms of all varying sites, so that we have omitted those that 
have the same base in all four species. The calculation in terms of varying 
sites uses the fact that in  the worst case 1/16 of the sites will be invariant, so 
that the expected fraction of sites which favor the wrong tree by one substitu­
tion is 3 1 1 5  per varying site rather than 3/ 1 6 per site. 

THE CONFIDENCE INTERVAL ASSUMING A CLOCK Cavender's calculations 
assume no evolutionary clock. When a clock can be assumed, the bounds can 
be made much tighter. I have (45) used the fact that when there is a clock the 
worst case is no longer one that has all of the "phylogenetic ally informative" 
sites backing the wrong tree. With three species (or four, if one h as an 
outgroup) the worst case is the trifurcation-this is the tree of one topology 
most likely to give evidence favoring another topology. Each "phylogeneti­
cally informative" site has a 113 chance of favoring each of the three possible 
tree topologies . For this worst case, one can, by considering all possible data 
outcomes in turn and working out the probability of each, tabulate the 
distribution of the number of steps by which an incorrect tree will be favored. 
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Table 1 95% point of distribution of difference in number of 
substitutions 

Sites All sites Varying sites only Informative (clock) 

2 2 2 
3 3 3 
4 3 3 4 
5 3 4 5 

I O  5 5 5 
1 3  6 6 5 
15  6 7 6 
20 8 8 6 
25 9 9 7 
30 1 0  1 1  8 
40 1 3  1 3  9 
50 15  16 9 

100 26 28 13 
200 48 50 17 
500 109 1 16 27 

1000 209 222 
2000 405 43 1 
5000 984 1048 

10000 1940 2067 

The final column of Table 1 gives the 95% points of this quantity for various 
numbers of "phylogenetic ally informative" sites . 

The application of these numbers can be illustrated using the data of 
Miyamoto et al (95). They examined 7100 sites of sequence, found 391 sites 
that varied, of which 1 3  were phylogenetic ally informative, having 8, 3 and 2 
sites , respectively , that favored human-chimp, chimp-gorilla, and human­
gorilla clades . Using Table 1, we find that with 7 100 sites one would need to 
have the best tree favored by about 1 385 steps to be significantly better than 
the next best. If we confine our attention to the 391 varying sites and use the 
second column, the required differential in the number of steps drops to about 
95. This still leaves the result wildly insignificant. However, if we are 
allowed to assume a molecular clock, then we find that with 1 3  "phylogeneti­
cally informative" sites we need a differential of only 5 steps , exactly the 
number found. This indicates that these data favor human-chimp by an 
amount barely significant at the 95% level. 

Another calculation could ask whether the number of sites favoring the best 
tree is significantly greater than 113 (42). The result of 8 out of 1 3  does not 
quite reach the 95% point, which is 9 sites . This is a different way of using the 
same data and points out that it is not obvious which statistic to use. 
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540 FELSENSTEIN 

TEMPLETON
' S PAIRWISE TEST Templeton (138) has used the same sort of 

data differently. He asks, for two given trees, whether the data supports one 
significantly more strongly than the other. Looking at the differences of 
numbers of substitutions at each site, he does a Wilcoxon signed-ranks test of 
the hypothesis that the sum of the number of substitutions is equal in the two 
trees (which is the same as saying that the mean number of substitutions is 
equal). For fewer than six species the number of substitutions per site cannot 
differ by more than one per site. One can therefore simplify Templeton' s  test 
by comparing the number of sites favoring the one tree with the number 
favoring the other, and test these for departure from one half by a sign test (A. 
Wilson, personal communication). 

I have used the technique of enumerating all possible data outcomes in a 
three-species case (45) to check whether Wilson's  simplified version of 
Templeton's  test is conservative. It turned out that it was, provided that the 
sign test is done as a two-tailed test, rather than one-tailed as Templeton had 
recommended. This seems necessary because we do not know in advance 
which tree is going to be best; even if we examine them and order them by 
number of substitutions immediately before doing the test, that does not 
change the necessity for doing a two-tailed test. Applied to the Miyamoto et al 
(95) data, we test the best two trees against each other, comparing the 8 
characters supporting one to the 3 supporting the other. We find that 8 out of 
1 1 , on an expectation of 1 12 has a two-tailed value of P = 0.22, so that the 
result is not significant. It should not be surprising that we get slightly 
different results using different statistics. All seem to be telling us that these 
data are near the level of significance but at most barely beyond it. 

The advantage of Templeton' s  test, and Wilson' s  simplification of it, is that 
it is not restricted to the three-species case.  We can test any two trees against 
each other to see which is significantly more strongly supported by the data. 
The test does not construct a confidence interval-it simply tests two pre­
designated trees. If both are ill-supported by the data we may find ourselves in 
the absurd position of proving that one bad tree is significantly worse than 
another. Later we see some more recent developments of this test in the 
direction of constructing confidence intervals. This family of tests has scarce­
l y  ever been applied, but note that Holmquist et al (71) report that Prager & 
Wilson have made use of the sign test in analyzing primate mitochondrial 
sequence data. 

SNEATH ' S DISTANCE TRIADS Sneath ( 125) has developed formulas for 
estimating variances and covariances of lengths of adjacent branches in trees 
computed from sequence data. His methods use triples of reconstructed 
branch lengths in the interior of the tree, computing their variances by several 
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approximate methods. Although he has performed some simulation checks, 
little is known about how accurate his methods will be or how they relate to 
the tests mentioned above. 

Distance Methods 

F TESTS When the trees are generated by distance methods , we can some­
times use classical least squares methods to test hypotheses about them. I have 
outlined (43) how to use least squares methods to test whether a tree assuming 
a molecular clock fits the data better than one that does not assume it. The test 
uses the F distribution and assumes that we have obtained the same tree 
topology under both assumptions-in effect the test is that the branch lengths 
satisfy the constraints imposed by a clock. Barry & Hartigan (3) have used a 
similar approach to hominoid DNA hybridization data. Rohlf & Sokal O I l) 
have presented a closely similar test in a clustering context. The same test can 
be used, in another variant, to find confidence limits on the length of any one 
branch, or joint l imits on the lengths of any two branches .  I have also argued 
(46) that we can use the F test to conservatively test whether a tree topology 
adjacent to the best one can be rejected. As the discussion of tests based on 
likelihoods shows, it can be argued that this test is incorrect. 

There is in any case a serious flaw in using the F test on distances derived 
from sequence data. For such tests to be valid we must be able to assume that 
the distances are statistically independent, which will essentially never be true 
if they are derived from sequence data. A random change in a sequence will 
affect the distance between that species and all others in the tree . For 
example , a random change in the sequence of the ancestor of all primates will 
affect the sequences of all primates and thus all the distances between 
primates and nonprimates. Statistical fluctuations of distances from sequences 
will not be independent. For this reason the F test is not useable for sequence 
data (or for distances derived from restriction sites , restriction fragments , or 
gene frequencies) . 

THE RELATIVE RATE TEST Sarich & Wilson (122, 1 23) introduced the 
"relative rate test" which they used to investigate whether there has been a 
change in the rate of evolution on one branch of a tree. An outside reference 
species is used, and descendants of two sister l ineages compared. For ex­
ample , we might use a baboon as outgroup and compare the gibbons with the 
other apes. The objective is to see whether the baboon-gibbon distances are 
different from the other baboon-ape distances . If the source of statistical error 
in the distances is purely measurement error, arising independently in each 
pairwise distance, then the test can be conducted. But when we have distances 
derived from sequence data, in which individual substitution events can affect 
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542 FELSENSTEIN 

many of the distances simultaneously, the values become correlated and 
cannot be treated as statistically independent. 

A substitution in the ancestor of the African apes (human, chimpanzee, and 
gorilla) , for example, will inflate the distances of all of these to the baboon. 
They therefore cannot be treated as independent observations , as is implicit in 
the relative rate test. It therefore seems that the relative rate test is sensitive to 
the error structure in the data, and inappropriate for distances derived from 
sequence data, unless greatly modified . 

VARIANCES OF BRANCH LENGTHS Nei et al ( 103) have presented formulas 
for computing variances and covariances of branch lengths in trees derived 
from distance matrices, taking into account the variances and covariances of 
the distances when those are generated from sequence data. Their methods 
apply to purely clocklike trees,  in which the times of forks are estimated by 
averages of pairs of species whose last common ancestor was that fork. Their 
formulas are closely related to those used by Chakraborty ( 12) ,  although 
different in methods of approximation. Nei et al state that their formulas 
become tedious to compute when large numbers of species are involved. They 
share this with Chakraborty's formulas, which compute all the variances and 
covariances of branch lengths, but only at the cost of constructing matrices of 
size n(n-l )/2 by n(n-l)/2 and inverting some of them. For example, a study 
with 15  species would require manipulation of matrices 1 05 x 105 in size. 
Nevertheless, it is probably worthwhile to compute the variances and covari­
ances of branch lengths to get a clearer picture of the effect of statistical error 
on the estimate of the tree. 

The above approaches use distances that have been logarithmically trans­
formed so as to be approximately linear with time. A more sophisticated 
approach would be to use the untransformed distances but allow them to 
depend nonlinearly on time. This has been done by Hasegawa et al (64, 67) 

who developed an interesting nonlinear distance matrix method specifically 
adapted for distances from nucleotide sequences . They compute two dis­
tances,  one from transition differences and one from transversion differences. 
These depend nonlinearly on time, and they use nonlinear equation-solving 
methods to find numerically the optimum branch lengths. They also present 
formulas for the variances and covariances of these estimates . Like those of 
Chakraborty ( 12) and Nei et al ( 103), these involve computations with large 
matrices. 

As yet no one has adapted any of these methods to the case where no 
molecular clock can be assumed. This could be done, although it might be so 
much algebraic work that a bootstrap resampling approach would be easier 
(see below). 
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TEMPLETON
'S DELTA-Q TEST Templeton ( 1 39) proposed a nonparametric 

method for distance matrix data to test whether one tree was significantly 
more supported than another. He first replaced the table of pairwise distances 
by their ranks, then derived a test statistic, delta-Q, from these. His method 
and its application to published hominoid DNA hybridization data has been 
criticized by Ruvolo & Smith ( 1 14), Saitou ( 1 15),  and Fitch (57), and 
defended by Templeton himself ( 140) . The fundamental cri ticism is that, b y  
reducing the data to ranks, much o f  the statistical power in the original data 
can be lost. For example, for four species even the cleanest data, analyzed by 
the delta-Q method, is completely unable to discriminate between the true 
phylogeny and any other. This lack of power is the price one often pays for 
robustness when using nonparametric statistics-and it is too easily over­
looked. 

The robustness gained is not total. For example, the test assumes that the 
statistical variation of the distance values is independent. This may be true 
with DNA hybridization values but is certainly not true for distances derived 
from sequences, as already mentioned. For that reason the delta-Q test would 
need substantial revision to apply it to sequences. 

Tests Based on Likelihood Methods 

When we consider the likelihood "surface" that results from the likelihoods of 
all possible trees (including all possible combinations of branch lengths) , 
there are two general approaches to assessing the statistical variability of the 
results. For a given tree topology, we can use the curvatures of the likelihood 
surface plotted as a function of branch lengths to compute approximate 
variances and covariances of the branch lengths. One need only compute a 
matrix of second derivatives for all pairs of branch lengths. The covariance 
matrix of branch lengths i s  the negative of the inverse of this matrix. That is a 
classical result in likelihood theory, but it is not quite as useful as it might 
seem. The result is asymptotic, valid only for large amounts of data, which in 
this case means very long sequences. In such a case there will be no ambiguity 
as to the tree topology-the covariances can be used to set up a simultaneous 
confidence interval on the branch lengths, with all the trees in the confidence 
interval having the same topology. 

The issue of testing alternative tree topologies against each other, or of 
constructing a confidence interval that includes trees of more than one topolo­
gy, is complex. It is best to discuss first the use of the likelihood ratio in other, 
simpler cases. 

The likelihood ratio test (LRT) can be used to test whether some set of 
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544 FELSENSTEIN 

parameters in a model are restricted to given values. If we have a tree and 
wish to test whether it is consistent with a molecular clock, for instance , that 
amounts to the assertion that certain branch lengths and sums of branch 
lengths must be equal. In Figure I ,  we can obtain a clocklike tree like the one 
on the right by requiring that VI = V2, V4 = vs, and V3 = V4 + V6 (the 
requirement that V3 + Vs = VI + V7 is not a restriction of parameters , since the 
tree on the left does not constrain V7 and Vs individually, as it is an unrooted 
tree). This means that a tree of 7 parameters, the branch lengths of the tree on 
the left, is constrained by the clockness assumption to have only 4 parameters, 
Vb V4, V6, and V7 .  In this case the LRT can be carried out: we find the best 
trees with and without the constraint. Twice the logarithm of the ratio of their 
likelihoods is (asymptotically) distributed under the null hypothesis of clock­
ness as a chi-square variable with 7 - 4 = 3 degrees of freedom. This test of 
clockness is perhaps the most complete test possible, but it has not yet been 
carried out on actual data. I have done such a test in the DNA hybridization 
case (48) , but not in the sequence case. 

There are other cases in which the LRT is useable. When we wish to test 
assertions about rates of evolution in different parts of a molecule, such as the 
assertion that evolutionary rates are different at the third codon position, we 
could find the maximum likelihood trees under both hypotheses and take the 
likelihood ratio. If, for example, we had one model in which all three codon 
positions changed at the same rate, and another in which there was a different 
rate parameter for the third position, the restrictive model constrains the two 
parameters to be equal . The LRT would then be applicable with one degree of 
freedom. 

Figure 1 Phylogenies without (left) and with (right) the assumption of a molecular clock. Next 

to each branch of the trees is the branch length, which measures the expected amount of change, 
the product of the expected rate of change and time. In the tree on the right, the branch lengths are 

constrained so that all tips are level. The molecular clock is tested by testing for these constraints. 
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The LRT can also be used to improve on the confidence interval obtained 
from the curvatures of the likelihood. The likelihood ratio between the 
estimated tree and the true tree could be tested with a number of degrees of 
freedom equal to the number of branches (2n-3 if there is no clock assumed 
and there are n species). Thus by finding the likelihood that would be barely 
significant with this number of degrees of freedom, we can tell how far down 
the likelihood surface we should allow ourselves to go to define a confidence 
interval that would have a given chance of containing the true tree. This 
interval would probably be a better approximation than the one obtained from 
the curvatures, but it too is well-justified only when all trees in the interval 
have the same topology. 

The LRT is applicable when the more restrictive hypothesis is a subcase of 
the less restrictive one, and when it is in the interior of the space defined by 
that hypothesis. In the third codon position example, the rate for the third 
codon could be either higher or lower than that for the others , so that the 
restrictive hypothesis is in the interior of the interval of possible rates. A 
more serious problem is that the LRT's justification is asymptotic .  Techni­
cally it can be guaranteed to be correct only for very long sequences. In 
most cases statisticians ignore this requirement and hope that the LRT will 
behave well with smaller data sets. The phylogeny problems are not 
known to be any worse-behaved than others in this respect, but it would 
be desirable to have some verification, perhaps by simulation, of the ade­
quacy of the LRT. 

Testing different tree topologies against each other is much more difficult. 
When we test whether a particular branch could be of length zero, this is 
restricting a single parameter, and the LRT would have one degree of 
freedom. But the branch length cannot be negative, so the null hypothesis is 
on the boundary of the space. Owing to the continuity of the likelihood 
function in the vicinity of the trifurcation, this probably does not create a 
problem and we could still use the LRT (E. Thompson, personal communica­
tion) . But when we wish to test one bifurcating tree topology against another, 
these hypotheses are not nested one within the other and have the same 
number of parameters . I have suggested in the case where the two topologies 
are adjacent (that is, they each have a branch which, if its length is shrunk to 
zero, results in the same trifurcation) that we could test one topology against 
another conservatively by pretending that there was one degree of freedom. I 
have used this test with DNA hybridization data (48). 

Alan Templeton (personal communication) has pointed out that the logic I 
used in that argument is flawed, as the distribution assumes implicitly that the 
true tree has the trifurcation, whereas the intention is to use the test when it 
does not. It is possible that the conservativeness of this practice could be 
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546 FELSENSTEIN 

proven, but at the moment the matter is not proven. Thus we are left with a 
situation in which many interesting hypotheses can be tested by likelihood 
methods, but alternative tree topologies cannot, at least without further work. 
Since the confidence interval consists of those trees that cannot be rejected, 
this also leaves open the question of how to construct a confidence interval. 

APPLICATIONS AND EXTENSIONS Masami Hasegawa and his colleagues 
(65 , 66, 68) have applied maximum likelihood to mitochondrial and RNA 
sequence data. They have used the approximate standard errors of branch 
lengths and have reported differences in log-likelihood among topologies. 
Ritland & Clegg ( 1 1 3) have applied likelihood analysis to a variety of 
problems in plant phylogenetics. They have extensively tested different mod­
els of base change against each other and have tested equality of rates of 
evolution in different regions of the genome, using the likelihood ratio test. 
They were cautious about interpretation of likelihood ratio differences among 
different tree topologies, turning to other methods (see below) when interpret­
ing these .  Barry & Hartigan (3) have also compared likelihoods, using their 
own models and allowing a different probabilistic process in each branch of 
the tree, between different tree topologies for hominoid DNA sequence data. 

QUALIFICATIONS The main limitation of likelihood methods is that they 
require a precise parametric model of nucleotide (or amino acid) change. To 
the extent that this model is inaccurate, the inference drawn by using it may be 
wrong. Some authors , on hearing this point, have concluded that likelihood 
methods are particularly delicate. In fact, no such conclusion is justified. In 
the case of likelihood methods the model is explicit-for most other methods 
the model is implicit. Both kinds of method may be sensitive to violation of 
the model-it is just that in likelihood methods the model is more visible. 
There is no reason to believe that likelihood methods behave worse than 
parsimony or distance methods on real data, even when the model is not 
plausible. 

That these models are not plausible should be apparent. Gillespie (62) has 
been witheringly skeptical, on empirical grounds, of all existing stochastic 
models of nucleotide sequence change. Heterogeneities of rate between dif­
ferent parts of the DNA are so extensive that it is impossible to believe in any 
of the models employed in likelihood analyses . Given that, and the hopeless­
ness of finding a general and tractable model , should we not abandon attempts 
to use these highly parametric methods? We see below that we need not 
abandon them and that they can be greatly strengthened by being combined 
with empirical nonparametric methods . 

A
nn

u.
 R

ev
. G

en
et

. 1
98

8.
22

:5
21

-5
65

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

N
ev

ad
a 

- 
R

en
o 

on
 1

1/
14

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Invariants 
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Closely related to likelihood methods are methods using invariants. These are 
functions calculated from the data that take one value for all trees of a given 
topology, irrespective of their branch length . The impetus to investigate 
invariants has come from the realization that parsimony methods can be 
inconsistent (as explained above) and that a method insensitive to branch 
lengths would have considerable advantages. The three papers on this subject 
are those of Cavender & Felsenstein (11) and Lake (87 , 86). All investigate 
four-species trees, the smallest ones that have nontrivial differences . Caven­
der (11) discovered functions of the expected frequencies of different types of 
characters in a two-state case which were invariants , in the sense that they 
would be zero on the true topology. The functions were quadratic, and it was 
not easy to make a simple statistical method out of them. They were no longer 
zero if evolutionary rates varied from character to character, for example. 
What they did do was to express more explicitly what were the constraints on 
the expected frequencies of character outcomes that corresponded to having a 
tree of a given topology. 

Lake (87 , 86) found a different set of invariants with the property that they 
were nonzero only for the true topology. Lake's invariants are for a four-state 
case (modelling nucleotide sequences) and have the nice property of being 
linear rather than quadratic. This endows them with properties that avoid the 
problem of rate inequalities at different sites. If we consider four species and 
take all sites that are comparable in all four, some of these will show (for the 
four species, respectively) a pattern xxzz, where x and z are bases that differ 
by a transversion (such as x = A and z = n. Some will be xyzz, where x and y 
differ by a transition and z from both by a transversion, and some will be 
xyZW, where x and y differ by transversions from z and w. Many sites will, of 
course , have other patterns such as xxxx, xxxy, xzxz, etc . Letting P(xxzz) be 
the fraction of sites which are expected to show pattern xxzz, and similarly for 
the others , the invariant is 

P(xxzz) + P(xyzw) - P(xyzz) - P(xxzw),  

which can be shown, under a suitably symmetric model of base change, to be 
nonzero for the tree topology «A, B),  (C, D)) and zero for the other two 
possible topologies. This means that the fraction of sites showing one of the 
patterns xxzz and xyzw should equal that showing one of the patterns xyzz and 
xxzw. Lake's statistical technique is to test this by counting these patterns in 
the data and doing a chi-square test of equality between these two classes of 
sites (an exact binomial test would work as well) . Lake has also presented 
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548 FELSENSTEIN 

(86) a method for estimating the lengths of the branches in  the trees from 
similar calculations. 

The advantage of linear invariants such as Lake's is that they make the 
inferences about tree topology in a way that is not sensitive to different branch 
lengths or different rates of evolution at different sites. This is a great 
advantage, but it is somewhat compromised by some disadvantages . The 
model of base change under which Lake derives his results has some built-in 
symmetries (when an adenine undergoes a transversion it must be equally 
likely to end up as cytosine or a thymine, and similarly for the other three 
bases) which may not reflect biological reality. It remains to be seen whether 
the method can be corrected for departure from that assumption. Secondly, by 
ignoring information from sites that do not have patterns such as xxyz, xyzw, 
and such, we inevitably lose some power. This is expected to be particularly 
pronounced in groups of closely related species, where transversion differ­
ences may be infrequent . With enough data, the method could be used even 
on fairly closely related species. Holmquist et al (72) have found Lake's 
invariants useful in discriminating among phylogenies of the higher primates 
using about 10 kb of sequence. 

It is also not obvious how to extend the method to greater numbers of 
species. Lake (87) used an approximation to incorporate information from 
multiple sequences to ask whether a given interior node of a phylogeny exists . 
The approximation seems very rough; there should be a better way of using 
multispecies information. 

Maximum likelihood methods do use information from multiple species 
correctly. They also make full use of all positions---even the invariant posi­
tions contribute to the estimation of overall evolutionary rate. However, the 
models employed may be unrealistic. The question of whether invariants are 
to be preferred to likelihoods thus depends on whether the models that 
underlie likelihood methods are likely to have broken down, without the 
symmetry assumptions of invariants having broken down. The matter is a 
subtle one and needs much further investigation. 

THE BOOTSTRAP, THE JACKKNIFE, AND OTHER 
RESAMPLING METHODS 

The Bootstrap and The Jackknife 

Resampling methods have become popular in statistics in recent years. These 
involve using random sampling from one' s own data to find out empirically 
the variability in the estimator. These methods, notable jackknifes and boot­
straps, have been applied to phylogenies only recently. They provide us with 
a powerful way of escaping from some, if not all , of the restrictive assump­
tions of other methods . That is their great attraction-the conflicts between 
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information from different sites are assessed empirically. If different sites 
conflict, this will be reflected in a wider confidence interval . Conflict that 
goes well beyond what is expected under simple models of equal rates of 
change at all sites can easily be accommodated. Nonindependence of change 
at different sites cannot be so easily accommodated-in this respect these 
methods are not particularly robust. 

MUELLER AND AYALA
'

S JACKKNIFE METHOD Mueller & Ayala ( 100) 

used the jackknife method to test the reality of a branch in a phylogeny, using 
gene frequency data. Their methods could be generalized easily to trees 
computed from sequences by distance methods . The jackknife is a resampling 
method in which one data point at a time is dropped. The estimate (in this case 
a branch length) is recomputed from the data left after the point is dropped. In 
Mueller & Ayala's case the points were loci; in sequence data they would be 
sites. Usually one drops all the sites in tum, but if the number of sites is large 
one could alternatively drop a random sample of sites , one at a time. 

The collection of resulting estimates of the particular branch length are to 
be examined to see whether there is evidence that the branch length is greater 
than zero. It is important to realize that dropping one site will have a very 
small effect on the estimate, far smaller than the typical effect of sampling 
variability. In fact, we know how much smaller. If there are n sites, then the 
perturbation of the estimate by adding or dropping one site will typically be 
l in as large as the perturbation obtained by taking a completely new sample.  
In using the jackknife we compute "pseudovalues" of the estimate by taking 
the change in the estimate and extrapolating it by multiplying it by n. This is 
often left unclear because the formulas for the variance of the estimate 
incorporate the extrapolation factor without comment. 

Mueller & Ayala drop one locus at a time and compute the variance of the 
pseudovalues (which have been extrapolated) .  They then want to use these to 
compute the variance of the branch length, where the branch length is 
obtained from a UPGMA clustering from the distance matrix . They give 
methods of taking into account the covariances of the distances with each 
other, using the linearity of the relationship between branch lengths and 
distances. 

For phylogenies inferred by distance methods from sequence data, one 
need not use all of Mueller & Ayala's formulas. One could proceed more 
simply by dropping one site at a time, recomputing the distance matrix in each 
case, estimating the phylogeny from the resulting matrix, and recording the 
length of the branch of interest. If B is the branch length with all sites in the 
data and B '  the estimate after dropping one site, the pseudovalue for the 
branch length is 

S = n B - (n- I)  B '  ( 1 )  
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550 FELSENSTEIN 

which is the result of an n-fold extrapolation of the effect of dropping the one 
site since it can be rewritten as: 

S = n (B - B I )  + B I (2) 

which amounts to an n-fold extrapolation of the effect of adding the site. Note 
that this is the effect of adding, not dropping the site; the extrapolation is in 
the opposite direction from the effect of dropping the site. To test the reality 
of the branch we need to test whether the mean of the pseudovalues is 
significantly different from zero. This could be done by a t-test or simply by 
seeing whether 95% of the pseudovalues are positive. Mueller & Ayala use 
some approximations involving gamma distributions that are special to the 
case of genetic distances. Their technique has not bee� applied to sequence 
data yet, but it is closely related to the bootstrap, which is used in a similar 
way .  

LANYON
'
S JACKKNIFE Lanyon (88) has presented a completely different 

jackknife method for use with distance matrix data. Instead of dropping one 
site at a time, he drops one species at a time. A tree is constructed from the 
resulting reduced distance matrix .  A group found in the original tree is 
regarded as confirmed if it shows up (with the exception, perhaps, of the 
species that has been dropped) in all of the resulting trees. 

The difficulty with using Lanyon's method is that its statistical properties 
are completely unknown. The method is an exploratory tool for "distinguish­
ing stable from unstable portions of phylogenetic trees" (88), but it is not a 
truly statistical method. The reason is that the entities sampled, species, are 
not independent. Their nonindependence results from evolution, from the 
existence of a phylogeny, and is the very fact we wish to study. Jackknifes 
and other resampling techniques usually assume that the data points are 
independently drawn from some distribution, an assumption that is not valid if 
species are the units of resampling. 

Lanyon does not claim that his method can be used to create a confidence 
limit or test trees. There is no connection made in his paper between the 
assessment of whether a group is "stable" or "unstable" and any judgment of 
its statistical significance. This limits the technique to the status of a nonstatis­
tical exploratory tool. 

THE BOOTSTRAP I have (44) applied the bootstrap method of resampling 
( 19 , 20, 2 1 )  to phylogenies in a way parallel to Mueller and Ayala's  use of the 
jackknife. The bootstrap dictates that we resample the data set by drawing 
points from it with replacement, until we get a data set of the same size as the 
original. Usually some points are sampled several times, others left out. The 
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estimates made from the resampled data set need not be extrapolated in any 
way. A confidence limit on any quantity can be constructed by the "percentile 
method" of simply discarding (for example) the upper and lower 2.5% of the 
distribution of that quantity to obtain a 95% bootstrap confidence limit. 

The bootstrap assumes,  as does the jackknife, that the points are in­
dependent and identically distributed. As with the Mueller and Ayala jack­
knife, the sites are used as the entities to be resampled, under the assumption 
that they can be regarded as independently evolved on the same phylogeny. 
When a site is chosen to be included, it is copied into the resampled data set, 
keeping the nucleotides associated with the same species. The species are not 
resampled in any way-all of them are included in the resampled data set. 

The other choice , in addition to the method of resampling, is the quantity to 
be examined. A phylogeny is a complex multivariate entity with many 
discrete and continuous features, not just a simple number on a scale. It is not 
at all obvious how to take the cloud of estimates of the phylogeny, one or 
more for each bootstrap sample data set, and produce from them a confidence 
interval. 

The method I have used is to assume that there is some particular group (set 
of species) in which we have declared a prior interest. For example, we may 
wish to know whether the monophyletic group (human, chimpanzee) is on the 
true phylogeny. We look among all the bootstrap estimates of the tree , and 
count what fraction this group is monophyletic . In effect, we are interested in 
a 0-1 variable which indicates the presence or absence of the group. If 95% or 
more of the trees have the group present, then the 95% bootstrap confidence 
interval on the 0-1 variable contains only l '  s, so that we can declare the group 
significantly supported. 

The easy way to find such groups is to take all the bootstrap estimates and 
construct a majority-rule consensus tree (94). This is a tree with all those 
groups that show up in more than half of the bootstrap estimates of the tree. It 
will therefore contain all groups that occur 95% of the time. The difficulty is 
that we may then declare all of them significant, tantamount to deciding after 
the fact which hypotheses we were interested in testing. It leads us to a 
multiple-tests problem. Among every 20 groups we might examine, one 
should be declared significant at the 95% level by this procedure, even if none 
are actually on the true phylogeny. When we examine only groups that have 
shown up at least once in a bootstrap estimate of the phylogeny, the chance of 
a spurious significance is even greater. 

Thus we must either declare in advance which group we are looking for, or 
we must apply some correction for mUltiple tests. The proper multiple-tests 
correction has not yet been discovered. With n species there are 2n_ l possible 
groups,  and we may be interested in deciding whether each of them is 
significantly supported. For that matter, we may also be interested in whether 
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each of them is significantly opposed. If a group of prior interest is absent 
from 95% of the trees, it can be declared significantly opposed. Alternatively, 
we can use the upper and lower 2.5% points of the 0--1 variable, indicating 
presence or absence of the group to test in such a way that we can detect either 
the significant presence or the significant absence of a group. Again, this is 
subject to the multiple-tests problem if the group is not decided on in advance. 

THE DELETE-HALF JACKKNIFE A resampling method similar to the boot­
strap is to take a random half of the sites. This is a kind of jackknife in which, 
instead of dropping one character, we drop half of them. It is one of a family 
of jackknife methods advocated by Wu ( 143) for use in regression problems 
and has the advantage over other jackknife methods of not using any ex­
trapolation factor. If one parameter is being estimated, there is no extrapola­
tion at all-the variation between estimates from random halves of the data 
should be typical of the sampling variation of the estimate. The matter of how 
many parameters are actually being estimated is a complex one. If k parame­
ters are being estimated, we are supposed to choose samples of size (n + k -

1 ) /2 to avoid extrapolation ( 143) . However, if n is large, samples of size nl2 

will be close to the correct size for any modest value of k. 
I had also pointed out (44) , much more crudely, that a jackknife with 

random halves would have this property. Like the bootstrap, it can be used to 
construct a confidence interval by the percentile method. The only investiga­
tion yet is Penny & Hendy' s ( 1 10) empirical study using an actual data set, in 
which the delete-half jackknife (which they call "halflings" or the "method of 
Hobbits") shows about the same performance as the jackknife. It would be 
interesting to know under what conditions the one method is to be preferred. 

PENNY & HENDY 'S RESAMPLING METHOD Penny & Hendy ( 1 1 0) have 
used resampling methods , jackknifes and bootstraps, to show for a given data 
set how many characters would be needed to have the estimate accurately 
reflect the true tree. In the six protein molecules they used in different 
mammalian orders, there were 1 66 reconstructed "phylogenetic ally in­
formative" nucleotide sites. They have resampled subsets of sites of various 
sizes, including bootstrap samples and jackknifes that delete various numbers 
of sites. They estimated trees (by parsimony or various kinds of weighted 
parsimony) for each resampled data set, without engaging in any extrapola­
tion. They used a distance measure between trees, the partition metric,  which 
measures the number of subsets of species that are different between the two 
trees. For the jackknifes they took nonoverlapping subsets of various sizes (up 
to half the sites) and measured the difference between the resulting trees .  
Extrapolating the results , they could show that about twice as  many sites 
would have to be in the analysis for it to be reasonably likely that the most 
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parsimonious trees from different subsets be identical. One of the main 
objectives of their paper was to test various methods for weighting sites. They 
found that when positions were given less weight when they conflicted with 
others, the results were more reliable. 

In effect Penny & Hendy were using the resampled data sets as an experi­
ment on the statistical variability of res amp ling methods and to see how 
accuracy of estimation of trees was related to the number of informative sites. 
Their results give us a feel for the sizes of confidence intervals to be expected 
from different amounts of sequence, although they did not indicate how to 
extrapolate them to other groups of species, nor did they actually present a 
confidence interval on their estimate of the tree . 

INTERVALS BASED ON PAIRED COMPARISONS OF SITES Templeton's 
( 138) paired sites test has already been described. One might wonder whether 
it could be used to construct a confidence interval. Could one take all trees 
that fail to be significantly worse than the most parsimonious one, and call 
those a confidence interval? Since these tests are of different hypotheses, it is 
not obvious how to correct for the multiplicity of tests or the fact that some of 
them are of closely related hypotheses (if we reject tree T from the confidence 
interval, this is nearly the same test as the one that examines a closely similar 
tree). It seems that the naive procedure of taking all trees that do not fail the 
pairwise test could not possibly be valid. And yet there is some indication that 
it may be. 

H. Kishino & M. Hasegawa (in preparation) have presented a variant on 
Templeton's  test that uses likelihoods . They examine differences , site by site, 
between log likelihoods . They are then able to construct, from a Bayesian 
approach, an argument that an interval containing 95% of the posterior 
probability is found by taking, in effect, all trees that are not rejected 
compared to the maximum likelihood tree. This is not quite the same thing as 
a confidence interval, but it is related to it. They note that the same argument 
would apply to parsimony, using the Templeton test. 

The difficulty with this method of constructing a confidence interval, apart 
from the question of whether it really is a confidence interval, is that one must 
examine trees one at a time to see whether they are rejected from the interval. 
This is a large computational task, although competing methods such as 
bootstraps are also computationally intensive. 

SIMULATION STUDIES 

Closely related to resampling is simulation. In fact, one bootstrap method, the 
"parametric bootstrap" (22) consists simply of taking the best estimate of the 
tree, simulating new data sets of the same size by evolution occurring along 
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that tree under the postulated model , and then using the variability among 
estimated trees from those simulated data sets to assess how much variability 
there was in the original estimate. This is one of the best uses of simulation, 
and should be done more frequently. It is not often done, partly because we 
may doubt that we have an accurate enough picture of the stochastic processes 
which bring about the data, but mostly because the potential users are 
intimidated by the complexities of computer simulation. 

Most computer simulation studies have a different aim. They use simula­
tion to test competing methods to see which does a better job of estimating the 
true tree. The problem common to such studies is uncertainty whether the 
results will continue to apply when the true tree is of a different shape or depth 
in time, the data set of a different size, or the model of evolutionary change 
different. Nevertheless, there is enough consistency among results to make 
comparisons interesting. 

Many of the simulations carried out so far have been for gene frequency 
data rather than sequence data. These include those of Kidd & Cavalli-Sforza 
(78), Kidd et al (79) and Astolfi et al ( 1 ) ,  Nei et al ( 101 ) ,  Rohlf & Wooten 
( 1 1 2) and Kim & Burgman (80). Others such as Fiala & Sokal (50) and Sokal 
( 1 30, 1 3 1 ,  1 32) have modelled discrete morphological characters . Many of 
the patterns found in simulations of molecular sequences also are found in 
these simulations. 

Simulations modelling molecular sequence data include the papers of 
Peacock & Boulter ( 109), Tateno et al ( 135) , Blanken et al (5), Hasegawa & 
Yano (66) , Tateno & Tajima ( 136a) Li et al (93), Sourdis & Krimbas ( 1 33), 
Sourdis & Nei ( 1 34) , and Saitou ( 1 17) .  It is hard to come away from a reading 
of these papers with a clear overall consensus as to whether distance matrix or 
parsimony methods are better (none tested likelihood methods against these 
other two kinds) . Peacock & Boulter (109) suggested that parsimony was 
better when sequences were little diverged, distance matrix methods better 
when divergence was more ancient. Sourdis & Nei ( 1 34) found a similar 
pattern. Blanken et al (5) found little difference between these methods. The 
gene frequency simulations cannot be compared readily to the nucleotide 
sequence simulations for this purpose. The simulations of discrete morpho­
logical characters can. Only that of Sokal (130), in which the organisms were 
not actually simulated but were "evolved" on paper by a biologist, can be 
directly compared: it had a moderate degree of divergence (as judged by 
changes per character) and was better estimated by parsimony than by the 
UPGMA distance matrix method. 

There is one pattern, predicted by theory, that is found to be fairly clear in 
the simulations ,  though rarely commented on by the authors . This is the 
inconsistency of UPGMA clustering methods when rates of evolution in 
different lineages depart sufficiently from a clock. As noted above in the 
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discussion of distance matrix methods, UPGMA (average linkage) or other 
clustering methods can be inconsistent when we are not close to a clock. 
Examination of the conditions for this to happen in simple cases (42) show 
that UPGMA will fail considerably more readily than will parsimony, requir­
ing only differences in rate between lineages of about a factor of two before it 
is expected to misbehave. Parsimony will be inconsistent when rates vary 
more extremely (although it will also fail, as Hendy & Penny (69) have 
discovered, in some clocklike cases where clustering methods will not). 
Distance matrix methods in which distances are properly transformed to 
reflect estimated divergence times and maximum likelihood methods are 
among those not expected to show the inconsistency. 

Some of the simulation studies were conducted with a molecular clock 
assumed, others without. For this purpose we can compare the gene frequen­
cy, discrete morphological character, and nucleic acid simulations-any one 
in which a clustering method was compared to either a parsimony or a 
distance method. UPGMA was found to perform well in the clocklike sim­
ulations of Tateno et al ( 135), Nei et al ( 101) ,  and Tateno & Tajima ( 1 36a). 
Fiala & Sokal (50) had an intermediate degree of rate variation, and found 
clustering to have mediocre performance. The studies in which rates varied 
considerably from a clock found clustering to perform badly, as expected. 
These include the studies of Blanken et al (5) , Sokal ( 1 30) , Sourdis & 
Krimbas ( 1 33), and Kim & Burgman (80). 

The failure of parsimony to be consistent when rates vary is also seen when 
looked for. Hasegawa & Yano (66) used simulation to check the analytic 
results on inconsistency of parsimony for four species, and they found that 
parsimony did in fact fail in cases when likelihood did not. Kim & Burgman 
(80) carried out a similar test for gene frequency data and again clearly 
confirmed the expected misbehavior of parsimony methods . What is less clear 
is whether the weakness of parsimony methods when compared to distance 
matrix methods, for example in the studies of Sourdis & Nei ( 134), is a 
consequence of the inconsistency of parsimony. When cases with fewer or 
more sites are compared, one gets the impression that adding sites is helping 
parsimony methods less than it helps distance methods in identifying the 
correct tree. 

Maximum likelihood and Lake's method of invariants have as yet received 
fewer simulation tests than the parsimony or distance methods .  As mentioned 
above, Kim & Burgman (80) and Hasegawa & Yano (66) found it to converge 
on the correct tree when parsimony methods did not. Astolfi et al ( 1 )  found 
maximum likelihood to perform only moderately well for their gene frequen­
cy simulations .  Rohlf & Wooten ( 1 12) found likelihood to become better than 
other methods when the number of loci simulated was large. Saitou ( 1 17) 
found that maximum likelihood with sequence data (for a small number of 
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species, with or without a molecular clock) had a lower probability of finding 
the correct tree than did a properly transformed distance matrix method. Since 
for sufficiently large amounts of data maximum likelihood should be more 
efficient than other methods, it will be interesting to see whether this low 
efficiency for intermediate amounts of data can be confirmed as a general 
property. 

Li et al (93) found that Lake's method of invariants continued to select the 
correct tree when inequalities of branch lengths caused both parsimony 
methods and Saitou & N ei ' s  ( 1 1 6) "neighbor joining" distance matrix method 
to be misled by inequalities of rates. (The distance matrix method was misled 
because the distances used were not transformed to correct for multiple 
changes). One would expect maximum likelihood methods to share this good 
behavior, and also distance matrix methods in which the distances were 
properly transformed. 

AN OVERVIEW 

This survey of methods for inferring phylogenies and assessing their reliabil­
ity shows that the field is in an incomplete but interesting state. We have a 
number of different approaches: parsimony, distance matrix methods, and 
likelihood methods. The assumptions inherent in these methods are only 
sketchily known-we have hints but little in the way of comprehensive proofs 
that particular assumptions are required. It is clear from the failings of 
different methods in particular cases that they all have assumptions; no 
method allows one to make inferences about evolutionary patterns in a 
well-justified way without making any assumptions about evolutionary pro­
cesses. 

When it comes to assessing the reliability of the estimated phylogenies, w e  
have only fragments of methods, cach with many properties unknown. Parsi­
mony methods can be inconsistent under a relatively unknown set of circum­
stances, of which we have only some hints. Distance matrix methods assume 
that we know how to transform the distances so that branch lengths are 
additive in expected distance. Maximum likelihood methods require 
specification of the probabilistic model of evolution, and it is not known how 
sensitive they might be to violations of the model , and how likelihood ratio 
tests can be performed to distinguish among tree topologies. 

In the last few years a variety of quasi-empirical methods have been 
proposed for assessing the reliability of phylogenies, such as the jackknife, 
the bootstrap, and Templeton' s  pairwise test. Simulation methods are also 
available for the energetic. However, we have only the faintest notion of how 
well-behaved and how powerful these tests are. 
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While much remains to be done to complete the above picture , there are also 
related problems that have received only limited exploration. Two of these 
deserve particular attention. One is the integration of sequence alignment with 
phylogenetic inference, the other the integration of population-level processes 
with phylogenetic inference. 

We have already mentioned the first of these, for which approaches have 
been pioneered by Sankoff et al ( 1 1 8) ,  Sankoff ( 1 19),  and Sankoff & Rous­
seau ( 1 20). Feng & Doolittle (49) have also recognized the need for a close 
relationship between sequence alignment and phylogenies. Of particular inter­
est is the attempt by Bishop & Thompson (4) to place sequence alignment and 
phylogeny estimation both in a likelihood framework. In their case there were 
only two sequences, so that the phylogeny estimation reduced simply to 
estimation of the time of divergence between the sequences. In principle the 
approach of Sankoff & Cedergren ( 1 2 1 )  could be carried out using likelihood 
instead of parsimony, although the computational problems would be ex­
treme. These computational problems have tended to divert attention from 
this approach. Even if it can never be made practical, it is important to 
consider, if only to gain perspective on what a complete integration of 
phylogeny estimation with alignment would look like. Overconcentration on 
practicality of methods has probably resulted in underestimation of the im­
portance of these papers. 

The second problem requires some further explanation. When we infer a 
tree by consideration of the sequence of one molecule, we are estimating the 
genealogy of the particular copies of the molecule that were sequenced (see 
the discussion by Nei ( 1 04) who calls this a gene tree) . When the time scale is 
fairly long there will usually be no discrepancy between the genealogies of 
molecules and phylogenies of populations. It does not matter which individual 
crow, alligator, or mouse we choose-if we sequence cytochromes from any 
individual in each of three species, the genealogy of thc gencs should havc 
the crow and alligator copies more recently descended from a common an­
cestor than either is from the mouse . One would gain little in the infer­
ence by sequencing other copies of this gene from any of these three pop­
ulations. 

When we work closer to the population level , matters become different. As 
Gillespie & Langley (58) , Tajima ( 1 36) , and Hudson (73) have emphasized, 
gcnes from different species, if traced backwards in time, both have ancestor 
copies in the population at the moment of speciation. But those copies are 
most likely not the same. We must trace back a further period of time, of 
average length 2Ne generations , before we find that these copies have 
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558 FELSENSTEIN 

a common ancestor. Ne is the effective population size (for mitochondrial 
genomes the figure is instead Net' the effective number of females). 

The result is that the genealogy of gene copies may actually differ from the 
phylogeny of the species. If we take my mitochondrion, yours , and a chim­
panzee's ,  it may well be that when human and chimpanzee speciated, all three 
mitochondrial lineages were distinct. As we go back before that any two of 
the three might equally likely be the first to join-say mine and the chimpan­
zee's .  Avise et al (2) have reviewed the problems that this "lineage sorting" 
creates when inferring geographic structure of species from mitochondrial 
genealogies. 

There are two ways to correct for this random perturbation of the trees . One 
is to use more molecules , particularly those not closely linked to each other. 
One of my hemoglobin-13 genes, one of yours , and a chimpanzee's may show 
a different genealogy than do the mitochondria. By collecting sequences from 
many loci, we should find that my gene copy and yours are more frequently 
sister lineages on the genealogy of gene copies than either of us is to the 
chimpanzee , thus indicating that our ancestors were in the same population 
for a time after the chimpanzee lineage split off. At the moment we totally 
lack a quantitative methodology for analyzing data like this-for reconstruct­
ing the phylogeny of populations, given a collection of sequences in which 
different loci are represented .  Our interest is not in the genealogy of gene 
copies itself, but in the pattern of relatedness of popUlations. The relevant 
methods have not been developed mostly because this kind of data has only 
recently begun to be collected. 

The other method of inferring the population phylogeny is to take multiple 
samples of the same locus from each population. This, in effect, is what Cann 
et al (7) did with mitochondrial DNA. They were able to see patterns in the 
genealogy of gene copies that suggested past population-level events such as a 
postulated bottleneck in the human species as it spread from Africa to the rest 
of the world . However, the phylogenetic methods they used were only able to 
estimate the genealogy of gene copies; the inferences about populations were 
made by informal and intuitive methods , there being no methods available for 
making them numerically. This is unfortunate--one would like to be able to 
make statistical statements about the reality and timing of the inferred bot­
tleneck . Here again, there is a serious need for the development of methods, a 
need that has not been addressed mostly because the relevant data is only now 
being collected . 

One can imagine how the inference could be done if practical com­
putational considerations were not a barrier. Suppose that we want to evaluate 
a phylogeny of populations, where that phylogeny specifies not only times of 
splitting of populations, but effective population sizes as well . We have a 
series of loci, assumed unlinked, and for each a population sample of se-
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PHYLOGENIES FROM SEQUENCES 559 

quences. One can, in principle, use the phylogeny, T, to place a prior 
distribution on each possible genealogy of gene copies, G (where G specifies 
the exact times of splitting of lineages) . Given the genealogy of gene copies, 
one can compute the likelihood of the data D, which is Prob(D ;G), the 
probability of D given G. The overall likelihood is Prob(D;D, the probability 
of the data given the phylogeny. This is the weighted sum over all possible 
genealogies of gene copies that could be generated by that phylogeny: 

Prob(D; T) = L Prob(G; T) Prob(D; G), 
G 

(3) 

the summation running over all possible genealogies of gene copies. The 
probabilities of the genealogies under the given phylogeny is obtained by 
consideration of the mathematics of genetic drift-the process in each popula­
tion is the "coalescent" process of Kingman (83, 84), for a review of which 
see Tavare ( 1 37). 

This idealized approach is not practical. The number of possible genealo­
gies over which the likelihood must be summed is so great that there will have 
to be some breakthrough for it to be used. We would need either a major 
algebraic simplification, a major advance in computational methods, or an 
approximation that enabled much of the computation to be avoided. Neverthe­
less, the above formulation is important in giving us a clear picture of the 
inference problem and the most general form of solving it. Likelihood for­
mulations frequently have this benefit even when they cannot be used in 
practice. Padmadisastra ( l 08) has made calculations relevant to the parallel 
problem of inferring phylogenies from models of neutral alleles .  The density 
of the mathematics in that paper, which treats the case of three populations,  
will be some indication of the long road ahead in the sequences case. 

Of course, I have been assuming that there is a phylogeny of populations . 
When the populations are members of different species, this is un­
contrpversial . But when they are drawn from the same species, it is far from 
obvious that the genealogy of the populations is treelike. Migration creates 
loops in the tree, and in the extreme the genealogy no longer looks at all 
treelike, but instead takes on the form of the migration pattern among 
populations. I have outlined elsewhere (40) the difficult and unsolved in­
ference problems that arise when we try to use gene frequency data to 
distinguish between treelike historical patterns of branching and nearly 
treelike patterns of migration among populations . In the years since that paper 
was published scarcely any advances have occurred in our understanding of 
this problem. 

When we use sequence data the problem is at least as complex ,  but the data 
may have more power to discriminate among patterns of migration and 
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560 FELSENSTEIN 

inheritance than do gene frequencies. I hope that there will be some attempts 
to address this problem before we are overwhelmed by data. 

Another complication that arises with intraspecific data is recombination. 
When two loci are unlinked, one may approximate their behavior by saying 
that the genealogies of gene copies at the two loci are completely in­
dependently drawn from the set of possible genealogies within that popula­
tion. When two sites are linked tightly, they follow the same genealogy. 
When the linkage is incomplete, they may follow the same genealogy in part, 
and in part different ones. The problems that this causes for inferring the 
genealogy have only begun to be addressed. It is naive to think that by 
constructing genealogies for different parts of a molecule we will simply be 
able to see all recombination events . Hudson & Kaplan (74) have discussed 
problems of inferring the number of recombination events in the ancestry of a 
sample, and they find that many recombination events will leave no trace. 

In spite of all these difficulties, sequence samples of multiple loci from 
populations provide us with the most powerful data sets for looking at events 
in the past, giving us ways of detecting hybridization between species ,  and 
possibly even allowing us to see events in the speciation process itself. 
Whether this prospect can be realized will depend on whether the appropriate 
methods of analysis can be developed. The sequence data is beginning to pour 
in. It is just a matter of taking seriously the task of analyzing it. 
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