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 REPORTS

 Table 2. Cover of different grass parts (means ± SEM, n = 3 experimental blocks) in plots cattle accessed
 exclusively (C) or shared with wild herbivores excluding (WC) or including (MWC) megaherbivores. Column
 means listed in bold fonts and bearing different superscripts are statistically different (P < 0.05, Tukey's
 post hoc test).

 Live leaves Dead leaves Live stems Dead leaves

 (hits/100 pins) (hits/100 pins) (hits/100 pins) (hits/100 pins)

 Dry season
 c  88.7 ± 9.1  147.6 ± 7.0  15.4 ± 2.9  76.6 ± 8.7

 wc  75.9 ± 3.3  131.5 ± 6.1  18.2 + 2.2  76.1 ± 5.6

 MWC  80.7 ± 16.1  139.4 + 31.8  10.9 ± 1.8  62.4 ± 12.2

 F  0.5  0.2  1.8  1.4

 P  0.7  0.8  0.3  0.3

 Wet season

 C  181.1 ± 12.3  64.8 ± 6.1  33 + 5.5  42.1a ± 2.8
 WC  175.6 ± 4.6  58.2 + 1.3  27.9 ± 4.6  33.7b ± 2.7
 MWC  160.8 + 6.6  61.8 ± 8.9  21.5 ± 4.2  31.6" ± 2.2
 F  1.4  0.3  1.2  18.1

 P  0.3  0.8  0.4  0.01

 in catalyzing a "grazing succession" that culmi
 nates into enhanced access to high-quality forage
 by native ruminants in the Serengeti ecosystem
 (18,20,21).

 We suggest that the net effects of species in
 teractions in all ecological systems are a result of
 both competitive and facilitative effects, with the
 net effect being the one that is quantitatively
 greater. One paradigm of interspecific facilitation
 is that it tends to be greater in more stressful en
 vironments (22). This paradigm arose from plant
 facilitation research in which the main mecha

 nism of facilitation was lessening of environ
 mental stress (24). Our results suggest that other
 types of facilitation will produce different pat
 terns, depending on the underlying mechanism.
 Here, the net facilitation was during superficially
 less "stressful" conditions. Similarly, in another
 examination of trophic interactions in this study
 system, it has been suggested that competition is
 greater in sites characterized by lower productivity

 (25). We extend this pattern to demonstrate that a
 decrease in competition occurs with temporal as
 well as spatial increases in productivity and that
 this trend can be so great that it results in not
 simply less competition but actual facilitation be
 tween two key herbivore guilds. The net effect of

 these competitive and facilitative forces will be
 driven by the relative proportions of "dry" and
 "wet" times throughout the year and probably by
 additional factors, such as herbivore densities and

 ecosystem productivity.
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 Disentangling the Drivers of p
 Diversity Along Latitudinal and
 Elevational Gradients
 Nathan ]. B. Kraft,1-2* Liza S. Comita,3,4 Jonathan M. Chase,5 Nathan J. Sanders,6,7
 Nathan G. Swenson,8 Thomas 0. Crist,9 James C. Stegen,1011 Mark Vellend,112 Brad Boyle,13
 Marti ]. Anderson,14 Howard V. Cornell,15 Kendi F. Davies,16 Amy L. Freestone,17
 Brian D. Inouye,18 Susan P. Harrison,15 Jonathan A. Myers5

 Understanding spatial variation in biodiversity along environmental gradients is a central theme in
 ecology. Differences in species compositional turnover among sites ((3 diversity) occurring along
 gradients are often used to infer variation in the processes structuring communities. Here, we show
 that sampling alone predicts changes in p diversity caused simply by changes in the sizes of species
 pools. For example, forest inventories sampled along latitudinal and elevational gradients show the
 well-documented pattern that p diversity is higher in the tropics and at low elevations. However,
 after correcting for variation in pooled species richness (7 diversity), these differences in p diversity
 disappear. Therefore, there is no need to invoke differences in the mechanisms of community
 assembly in temperate versus tropical systems to explain these global-scale patterns of p diversity.

 Some of the most striking and frequently
 documented patterns in ecology are that
 species richness in local communities gen

 erally declines with increasing latitude and ele
 vation, such that the diversity of many clades
 peaks in lowland, tropical areas (1,2). The mech

 anisms underlying these gradients are often dif
 ficult to distinguish because multiple processes
 operating at multiple scales may govern geo
 graphic variation in diversity (5). For example,
 declines in diversity with elevation and latitude
 could result from deterministic community
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 Fig. 1. Latitudinal and elevational trends in mean a and y diversity for woody plants (A and B) drive a significant correlation between latitude and [5 diversity (C)
 and elevation and p diversity (D). p diversity is measured as the p partition (p = 1 - a/y).
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 assembly processes at local scales (4,5). Alterna
 tively, spatial variation in local diversity could de
 pend on processes that operate at larger scales (e.g.,

 speciation, extinction, and biogeographic disper
 sal), which trickle down to affect diversity in the
 embedded localities (6, 7). One way to disentangle
 such multiscale effects is to examine patterns of
 diversity across scales, with a particular focus on
 (3 diversity (a measure of compositional differences

 among samples), which links local (a) to larger
 scale (y) diversity (8-11). Differences in p diversity

 along biogeographic gradients have been inter
 preted as reflecting differences in the ecological
 processes acting along these gradients, includ
 ing variation in the range size (11) and dispersal
 ability (9) of species and in the strength of local
 processes, such as habitat filtering (8).

 As an example of how p diversity decreases
 «vith latitude and elevation, and the corresponding

 :hanges in a and y diversity, we use two data sets
 af woody plants. The first is from 197 locations
 along a latitudinal gradient spanning more than
 100° (12, 13), and the second is a similar set of
 sight locations spanning a 2250-m elevational
 gradient in Carchi, Ecuador (14,15). We define a
 diversity as the species richness of a single 0.01-ha

 subplot, y diversity as the total richness of the

 10 subplots (totaling 0.1 ha) at a location, and |3
 diversity as the heterogeneity in species composi
 tion (16) among the 10 subplots of 0.01 ha each
 established at each location, measured as the mul

 tiplicative (3 partition ((3 = 1 - a /y) (7 7,18). This
 spatial scale is smaller than has been used in many
 other studies of J3 diversity, but it is appropriate to

 capture responses to fine-grained environmental
 heterogeneity (19), as well as the local neighbor
 hood interactions that are known to strongly in
 fluence community assembly in temperate (20)
 and tropical (21) forests, although it does not cap
 ture coarser-grained environmental effects.

 In these data sets, sampled woody plant di
 versity at both smaller (a diversity) and larger
 [y diversity) spatial scales declines with increasing

 latitude (Fig. 1A) (12, 22) and elevation (Fig.
 IB) (14). Because y diversity declines more rap
 idly along both gradients than does a diversity,
 3 diversity therefore declines with increasing lat
 itude (Fig. 1C) and elevation (Fig. ID). Thus, these
 data sets, although collected at small spatial scales,

 show the same patterns typically seen in larger
 scale analyses (§).

 Although a common explanation for these de
 fines in p diversity would help explain latitudinal
 and elevational diversity gradients, caution is needed

 1/56  Z3 SEPTEMBER 2011 VOL 333 SCIENCE www.sciencemag.org
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 Fig. 2. The relation between (3 and y
 diversity (A) expected algebraically,
 based on the mean probability that a
 species occurs in a subplot when sam
 pled from a larger species pool where
 abundances follow a lognormal distri
 bution. Curves represent p-diversity values,

 measured as the p partition (1 - aly),
 for 10 subplots each composed of n
 individuals, as indicated. Similar rela
 tions are observed in empirical data
 from woody plants along a latitudinal
 (B) and elevational (C) gradient. See
 supporting online material for simu
 lations showing similar relations for other common measures of p diversity and for samples generated from uniform abundance distributions.
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 Fig. 3. Patterns in observed (red) and expected (black) (3 diversity of woody plants along a latitudinal (A)
 and an elevational (B) gradient and patterns in the p deviation, a standard effect size of (^-diversity
 deviations from a null model that corrects for y dependence, with either latitude (C) or elevation (D).

 before ascribing any possible ecological mecha
 nisms to these declines in p diversity. It is widely
 recognized that p diversity is a simple function of a

 and y diversity regardless of how it is calculated
 (e.g., multiplicative, p = y/a; additive,p = y — a;
 or p partition,p = 1 - a /y), and, therefore, is not
 independent of variation in either a or y diversity
 (16, 23,24). Even supposed "true" measures of p
 diversity (25) can vary simply because of changes
 in y diversity (26). Because y diversity varies along

 both latitudinal and elevational gradients, its influ
 ence on a and p diversity must be accounted for
 before any ecological explanations are offered.

 To account for effects of variation in y di
 versity, we first explored the relation between y
 diversity and p diversity in the absence of any
 process other than random sampling. We found
 that expected [5 diversity increased with y diver
 sity, which can be shown algebraically for the

 multiplicative p partition (Fig. 2 A) (27), or with a
 simple simulation model using a wide variety
 of other traditional (3 diversity metrics (fig. S2).
 This expected relation between (3 diversity and
 y diversity holds regardless of the specific scales
 used to measure a and y diversity (e.g., Fig. 2A).

 Furthermore, in the woody plant data sets
 presented here, the correlation between y diver
 sity and observed (3 diversity along either the lat
 itudinal (Fig. 2B) or elevational (Fig. 2C) gradient
 was consistent with the pattern expected, solely on

 the basis of random sampling of individuals from

 the species pool. Because of this consistency, it is
 not yet parsimonious to infer that ecological mech
 anisms (e.g., niche-based processes or habitat
 associations) drive the observed differences in
 community structure along these biogeographic
 gradients. Instead, a null modeling approach is first

 needed to determine if (3 diversity deviates from the

 expectations of a random (stochastic) assembly
 process and whether the magnitude of the deviation

 varies along latitudinal and elevational gradients.
 Using the woody plant data sets, we com

 pared observed patterns of p diversity to patterns
 generated by a null model. The null model ran
 domly shuffles individuals among subplots while
 preserving y diversity, the relative abundance
 of species at the location, and the number of
 individuals per subplot (28). This explicitly cor
 rects for y dependency (fig. S4) and provides ex
 pected values of p diversity for each site based
 solely on random sampling from the species pool.

 It was surprising that the null model analysis
 revealed that (3 diversity is generally greater than

 expected at nearly all locations along both latitu
 dinal and elevational gradients (Fig. 3). This sug
 gests that species tend to be more aggregated within

 local subplots than expected by chance (29). Ag
 gregation across the range of species pools, climates,

 and forest types in our study could be explained
 by habitat filtering (30), dispersal limitation (31),
 and/or priority effects (32). However, the magni
 tude of the deviation did not vary systematically
 along latitudinal or elevational gradients (Fig. 3, C
 and D). In other words, after correcting for differ

 ences in species pool size, (3 diversity was the same

 both at tropical and temperate sites and at high- and
 low-elevation sites. This means that the net out

 come of local community assembly processes is
 consistent (in terms of their effect on (5 diversity)

 across these gradients (55) at the scale of our study.

 Taken together, our results indicate that var
 iation in p diversity across broad biogeographic
 gradients is more likely to be driven by y diver
 sity than by differences in the mechanisms of
 community assembly (e.g., niche versus neutral)
 (32, 34); range size and dispersal; or density
 dependent interactions (21,35). Therefore, there
 may be no need to invoke different local assem
 bly processes when trying to explain latitudinal
 or elevational differences in p diversity. Instead,
 a more plausible explanation is that variation in
 biogeographic or regional processes sets the
 size of the species pool (J), and the combined
 influence of local processes acts in a consistent
 way across large-scale diversity gradients (35)
 to produce the patterns of species turnover that
 are ubiquitous in the natural world.
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 A Role for Snf2-Related

 Nucleosome-Spacing Enzymes in
 Genome-Wide Nucleosome Organization
 Triantaffyllos Gkikopoulos,1 Pieta Schofield, Vijender Singh,1 Marina Pinskaya, ]ane Mellor,
 Michaela Smolle,4 Jerry L. Workman,4 Geoffrey ]. Barton,2 Tom Owen-Hughes1*

 The positioning of nucleosomes within the coding regions of eukaryotic genes is aligned with
 respect to transcriptional start sites. This organization is likely to influence many genetic processes,
 requiring access to the underlying DNA. Here, we show that the combined action of Iswl and Chdl
 nucleosome-spacing enzymes is required to maintain this organization. In the absence of these
 enzymes, regular positioning of the majority of nucleosomes is lost. Exceptions include the region
 upstream of the promoter, the +1 nucleosome, and a subset of locations distributed throughout
 coding regions where other factors are likely to be involved. These observations indicate that
 adenosine triphosphate-dependent remodeling enzymes are responsible for directing the
 positioning of the majority of nucleosomes within the Saccharomyces cerevisiae genome.

 Chromatin has the potential to influence all
 genetic processes that act on the under
 lying DNA. The application of genomic

 technologies to study chromatin organization has
 revealed a striking alignment with respect to
 transcribed genes, consisting of a nucleosome
 depleted region upstream of the transcriptional
 start site (TSS) followed typically by an array of
 nucleosomes whose positioning decays with
 progression into the coding region (1-3). This
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 College of Life Sciences, University of Dundee, Dundee, DDI
 5EH, UK. division of Biological Chemistry and Drug Discovery,

 College of Life Sciences, University of Dundee, Dundee, DDI
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 organization appears to be a conserved feature of
 the organization of eukaryotic genomes, and an
 assortment of factors have been proposed to
 contribute to its establishment (2, 3).

 Prime candidates are remodeling enzymes
 related to the yeast Snf2 protein that have been
 shown to be capable of repositioning nucleo
 somes (4). Of these enzymes, ISWI- and Chdl
 containing remodeling enzymes have been shown
 to be particularly effective in repositioning nu
 cleosomes in vitro (5-7). These enzymes share
 structural motifs that may adapt them for the
 purpose of nucleosome spacing (5), exhibit sen
 sitivity to an epitope in the N-terminal tail of his
 tone H4 (9, 10), and have been shown to alter
 chromatin at specific loci in vivo (11-15). This
 prompted us to investigate the extent to which
 deletion of any one of these proteins contributes
 to the overall organization of nucleosomes in vivo.
 To do this, we took advantage of recently pub

 lished data for ISW1 (14) and ISW2 (15) and our
 own data for a strain in which the CHD1 gene
 had been deleted. Numerous alterations to chro

 matin structure are apparent in each strain. How
 ever, when the average chromatin structure with
 respect to TSSs is aligned for all yeast genes, the
 individual deletions were observed to have rela

 tively minor effects (Fig. 1, A to C).
 The phenotypes associated with deleting in

 dividual ISW1, ISW2, or CHD1 genes are relative
 ly minor, whereas deletion of all three genes results

 in synthetic phenotypes (6). This led us to inves
 tigate chromatin organization in strains deleted for

 all combinations of these enzymes. Micrococcal
 nuclease digestion of chromatin isolated from these

 strains indicated the presence of spaced nucleo
 somes, except in the case of the iswlA, chdlA and
 iswlA, isw2A, chdlA strains (fig. SI). To charac
 terize chromatin organization in these strains in
 more detail, nucleosomal DNA fragments were
 isolated and subject to paired-end sequencing.

 The locations of nucleosome dyads were es
 timated as the midpoint of each paired-end read.
 A plot illustrating how the dyads map to a rep
 resentative chromosomal locus (chromosome I
 coordinates 100,000 to 120,000) is illustrated in
 fig. S2. In the wild-type strain, a clear periodic
 enrichment of nucleosomal dyads is observed
 with a mean spacing of ~15 base pairs (bp). In the
 iswl A, chdlA and iswlA, isw2A, chdlA strains,
 many nucleosomes were observed to be less or
 ganized than in the wild-type strain. However, it
 is also notable that while many nucleosomes lose
 positioning relative to the TSS in the triple mutant,

 a subset of nucleosomes are retained. Alignment of

 nucleosomal dyads with the TSS reveals that nu
 cleosome organization is grossly perturbed in these

 strains (Fig. 1, D and E). Especially prominent is a
 loss of nucleosome positioning through the coding
 regions while depletion of nucleosomes within the
 vicinity of the -1 nucleosome is unaffected. The
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