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differences between the effects of high-volatility and low-
volatility chemical diversity on herbivore damage. High-
volatility diversity reduced specialist herbivory, while low-
volatility diversity reduced generalist herbivory. Our data 
suggest that, although increased plant diversity is expected 
to reduce average herbivore damage, this pattern is likely 
mediated by the diversity of defensive compounds and gen-
eral classes of anti-herbivore traits, as well as the degree of 
specialization of the herbivores attacking those plants.

Keywords Plant interactions · Herbivory · Piper ·  
Volatile compounds · La Selva

Introduction

Community ecologists have struggled to find rules gov-
erning both the assembly of communities they study and 
the processes that occur within those communities (Law-
ton 1999; Simberloff 2004; McGill et al. 2006; Ricklefs 
2008). For plant communities specifically, the relation-
ship between plant diversity, herbivore diversity and 
abundance, and herbivory has been studied extensively in 
agricultural systems and natural habitats (Andow 1991). 
These studies have shown that when plant species rich-
ness is reduced, loss of primary production to herbivores 
generally increases (Brown and Ewel 1987; Andow 1991; 
Hillebrand and Cardinale 2004; Hooper et al. 2005; Jactel 
and Brockerhoff 2007). This pattern is most commonly 
explained by the “resource concentration hypothesis” (Root 
1973), which maintains that a particular resource will have 
a lower relative abundance in diverse plant assemblages 
than in less diverse communities. In general, as the diver-
sity of host plants in a community decreases, the encoun-
ter rate between a specialist herbivore and its plant host 
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will increase, resulting in higher herbivory. Nevertheless, 
many studies have found that herbivore damage can also 
increase with higher taxonomical diversity (e.g. Scherber 
et al. 2006; Loranger et al. 2014). For example, Schuldt 
et al. (2010) compared insect herbivory on tree sapling and 
shrub species within 27 forest plots in southeast China, 
and showed that insect herbivory increased with increasing 
plant species richness, even after accounting for potentially 
confounding variables—exactly opposite that predicted by 
the resource concentration hypothesis.

One possible explanation for such contradictory findings 
is the use of species diversity as a proxy for habitat com-
plexity. Although changes in taxonomic plant diversity are 
expected to affect plant–herbivore interactions, this effect 
is likely mediated by changes in the diversity of specific 
plant traits that affect the relationship between herbivores 
and plant hosts. Therefore, to assess the effect of diversity 
on plant–herbivore interactions, it is important to measure 
the diversity of biologically meaningful traits in addition to 
species diversity.

One such set of traits is plant secondary chemistry. 
There are two possible mechanisms by which plant chemi-
cal diversity could affect plant herbivore interactions. First, 
given that all herbivore species are probably limited in the 
number of defense chemical compounds they can overcome 
or circumvent, communities with high chemical diversity 
will likely have fewer hosts that are chemically compat-
ible with specific herbivores. Second, in the more chemi-
cally diverse communities, the search patterns of insect 
herbivores could be affected by the higher semiochemical 
complexity. For example, for herbivores searching for host 
plants via volatile compounds, increases in local chemical 
diversity, rather than species diversity per se, could reduce 
the encounter rate between herbivores and host plants due 
to chemical disorientation and odor masking (e.g. the semi-
ochemical redundancy hypothesis, Randlkofer et al. 2010; 
Beyaert and Hilker 2014).

The effect of plant diversity on plant–herbivore interac-
tions may also depend on local plant phylogenetic diver-
sity. Phylogenetic diversity can be defined as a measure of 
community complexity that incorporates the phylogenetic 
relationships between local species. A community with low 
phylogenetic diversity will comprise closely related spe-
cies, and a community with high phylogenetic diversity 
will primarily have distantly related taxa. Therefore, this 
measure of diversity can be important for understanding the 
relationship between diversity and plant–herbivore interac-
tions, as it can determine the similarity of phylogenetically 
conserved traits within the plant community. Consequently, 
phylogenetic diversity can also serve to capture some of the 
local variation of plant traits that are otherwise not explic-
itly measured. For phytochemical diversity specifically, it is 
generally expected that the closer the relationship between 

plant species, the more similar their chemistry will be. 
However, within a plant genus, herbivore selection may 
result in chemical diversification even among sister species, 
such that their differences are greater than those among 
more distantly related congeners (Coley and Kursar 2014).

Herbivore diet breadth is another commonly overlooked 
but extremely important component (Andow 1991; Specht 
et al. 2008; Schuldt et al. 2010) in assessing the relation-
ship between plant diversity and plant–herbivore interac-
tions. On one hand, herbivores with a narrow diet breadth 
(specialists) will have higher success finding hosts in sim-
ple, low-diversity habitats where compatible plant species 
are concentrated. On the other hand, herbivores with a wide 
diet breadth (generalists) are less likely to be affected by 
changes in the abundance of particular plant species, and 
therefore will be less sensitive to changes in local plant 
diversity (Root 1973; Andow 1991). Within the context of 
chemical diversity, herbivores with a narrow chemical diet 
breadth will be less likely to encounter chemically compat-
ible host plants as the chemical complexity of a community 
increases.

Furthermore, it is important to note that not all second-
ary plant metabolites act similarly on all insect herbivores 
(Lankau 2007; Orians and Ward 2010; Ali and Agrawal 
2012). For example, specialist herbivores are better adapted 
to circumvent, metabolize, or sequester specialized low-
volatility plant defenses (e.g. alkaloids, cyanides, and 
cardenolides); therefore, changes in the diversity of such 
compounds are more likely to affect generalist herbivores 
(Barker et al. 2002; Macel and Vrieling 2003; Macel et al. 
2005; Lankau 2007; Petschenka and Agrawal 2016). Simi-
larly, due to their narrow diet range, specialist herbivores 
are more likely to search for specific plant species and thus 
depend strongly on long-range chemical cues to locate their 
hosts (e.g. mono and sesquiterpenes, and phenylpropa-
noids; De Bruyne and Baker 2008; Bruce and Pickett 2011; 
Reudler et al. 2011; Büchel et al. 2014). Consequently, it is 
reasonable to expect that changes in the diversity of high-
volatility compounds will have a stronger effect on special-
ist than on generalist herbivores.

In this study, we assessed the effect of plant secondary 
chemistry on plant–herbivore interactions at the community 
level, taking into account herbivore diet breadth and plant 
phylogenetic relationships, for the neotropical species-rich 
genus Piper (Piperaceae). We measured the effect of chem-
ical diversity on total, specialist, and generalist herbivore 
damage on a set of naturally occurring Piper communities 
in a lowland tropical wet forest. In addition, we assessed 
how the diversity of different secondary compounds (high-
volatility vs. low-volatility) affected levels of specialist and 
generalist herbivory. We predicted that secondary com-
pounds of high-volatility would have a greater impact on 
specialist herbivore species than on generalists, because the 
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former are more reliant on volatiles to find their host plants. 
In contrast, generalists would be more strongly affected by 
low-volatility compounds than would specialists, which are 
likely to be better adapted to cope with such compounds.

Materials and methods

Study site and system

The study was conducted at the La Selva Biological Station 
in Costa Rica (owned and operated by the Organization 
for Tropical Studies) between May and August 2007. The 
station is located in the Atlantic lowlands of Puerto Viejo 
de Sarapiquí (Heredia). It contains more than 1600 ha of 
tropical wet forest and receives approximately 4000 mm of 
rainfall annually. To date, approximately 1850 species-rich 
of plants have been found in La Selva, 50 of which are in 
the genus Piper.

Piper (Piperaceae) is a pantropical genus with approxi-
mately 1000 species in the neotropics (Jaramillo 2006). The 
natural range of the genus in the New World extends from 
northern Mexico to northern Argentina. Piper species are 
abundant in low- and mid-elevation forests, rarely reaching 
2500 m, and are often among the most species-rich plant 
genera in neotropical forests (Gentry 1982; Marquis 2004). 
Most Piper species at La Selva occur in discrete patches 
that can contain up to 21 different species (Salazar et al. 
2013). Piper secondary metabolite diversity has been stud-
ied extensively, and there is an important body of published 
methods for compound isolation, chemical profiling, and 
artificial synthesis. Furthermore, the effects of Piper com-
pounds on herbivores, pathogens, and seed dispersal are 
well documented (Parmar et al. 1997; Dyer et al. 2001; 
Mikich et al. 2003; Dyer et al. 2004; Kato and Furlan 2007; 
Fincher et al. 2008; Marques et al. 2010).

Piper communities and herbivore damage

To assess the effect of Piper chemical diversity on herbi-
vore damage, we sampled 81 naturally occurring multi-
species patches of Piper throughout the primary forest of 
La Selva. Patches were selected by performing transects 
parallel to the station trails (transects were between 50 and 
100 m from the trail). All patches selected were at least 
250 m apart. To standardize sampling, a plot with a 10 m 
radius was set up in every patch. In each plot we counted 
the number of Piper individuals with a stem diameter of 
1 cm or greater at ground level; all Piper plants were iden-
tified to species.

For each Piper present in a plot, we visually assessed 
the percentage of specialist and generalist herbivory, meas-
ured as the percentage of leaf area removed. Every plant 

was assigned a value between 0 and 95 %, in increments 
of 5 %, for each herbivory type. Specialist and generalist 
herbivory in all Piper plants were easily distinguishable by 
the characteristic skeletonization of leaves by Piper spe-
cialist herbivores of the genus Eois (Geometridae) (Con-
nahs et al. 2009; Dyer et al. 2010). The neotropical spe-
cies of this genus are highly specialized and feed on one 
or rarely two species of Piper (Connahs et al. 2009). There 
are other Piper specialists at La Selva (e.g. weevils and leaf 
beetles; Marquis 1990); however, damage by these species 
was rarely encountered. Furthermore, Eois caterpillars have 
accounted for up to 75 % of the damage observed in Piper 
species (Salazar et al. 2013). For this reason, all non-Eois 
damage was assigned to generalist herbivores.

To assess the effect of chemical diversity independently 
of taxonomic species diversity, we calculated each plot’s 
taxonomic diversity (hereafter, Piper diversity) using the 
Gini–Simpson index. To account for the effect that the 
surrounding plant diversity could have on Piper herbivore 
damage, we also counted and identified all non-Piper plants 
present within all plots (hereafter, non-Piper diversity). 
Non-Piper diversity was calculated for each plot using the 
Gini–Simpson index as well. Diversity indices were calcu-
lated using EcoSim 7.1 software (Gotelli and Entsminger 
2012). Finally, given that light availability can influence 
leaf quality and palatability, and thus may affect levels of 
leaf herbivory (Angulo-Sandoval and Aide 2000; Blundell 
and Peart 2001; Takafumi et al. 2010; Salgado-Luarte and 
Gianoli 2011), we measured canopy openness (hereafter, 
light) for each plot using hemispherical photography. This 
technique measures the percentage of canopy cover using 
fisheye photographs of the forest canopy and the Gap Light 
Analyzer (GLA) 2.0 software package (Frazer et al. 1999).

Chemical analysis

For all Piper species, we collected leaf material samples 
from young, fully expanded leaves with 5–10 % herbivore 
damage (to control for the effect of induction). At least four 
samples were collected for each species, all from different 
plant individuals and different transects (plants were ran-
domly selected within each transect). Samples were dried 
with silica gel and transported to the University of Mis-
souri-St. Louis for chemical analysis. From each sample, 
0.4 g of dried material was ground to a fine powder under 
liquid nitrogen. To extract a broad range of secondary 
metabolites (polar and non-polar), samples were extracted 
using 1.5 ml of 1:1 methanol–chloroform solution. Sam-
ples were kept at temperatures below 5 °C at all times to 
reduce the loss of volatile compounds. As an internal stand-
ard, 0.1 mg of piperine was added to all samples. Samples 
were filtered (0.2 µ) and stored in volatile organic chemical 
(VOC) vials at −80 °C until analysis. Qualitative chemical 



1202 Oecologia (2016) 181:1199–1208

1 3

analysis of the extracts was performed using GC–MS 
(HP 5890 coupled with a quadrupole model 5988A mass 
detector) with helium as a carrier gas and an HP-5 capil-
lary column (30, 0.32 mm ID, 0.25 μm). To ensure good 
chromatographic resolution and to reduce the likelihood of 
co-eluting compounds, we used very slow runs (80 min). It 
is important to note that although this study focuses only 
on compounds that are detectable with GC–MS, an analy-
sis of more than 3500 records of secondary compounds 
found in Piper from NAPRALERT (Natural Products 
Alert Database; Loub et al. 1985) shows that these com-
pounds account for more than 75 % of all Piper secondary 
metabolites reported in this database (Fig. S1). Because the 
abundance of the secondary compounds can vary among 
individuals due to factors such as induction, genetic vari-
ability, and resource availability, we used only presence 
and absence data of chromatographic features. To assess 
chemical dissimilarity among all sample species, we used 
mass spectra and retention-time chromatogram alignment. 
Chromatograms were aligned using MZmine (Pluskal 
et al. 2010). The mass spectra of the different compounds 
in the samples were compared with NIST/EPA/NIH and 
MassBank (Horai et al. 2010) databases and with the pri-
mary literature. Metabolites that did not match the avail-
able sources and databases were classified as unknown. It 
is also important to note that this analytical approach does 
not depend on the precise identification of chemical com-
pounds. Here, a combination of mass spectral patterns, 
molecular mass, and retention times was used to ascertain 
the commonality of chemical compounds across plant spe-
cies (see the proof of concept section in the Supporting 
Information).

Plot chemical diversity

To assess the chemical diversity of the 81 sampled plots, 
we first used the pvclust function from the pvclust R pack-
age (Suzuki and Shimodaira 2006; R Core Team 2012) to 
generate chemical dendrograms (hierarchical clustering 
analyses; Ward’s algorithm) based on chemical data. We 
generated three different dendrograms: (1) a species total 
chemical dendrogram, (2) a species high-volatility chemi-
cal dendrogram, including only low molecular weight 
(<230 g/mol) terpenoids and phenylpropanoids, and (3) a 
species low-volatility but high molecular weight (>250 g/
mol) chemical dendrogram (amides, flavonoids, lignans, 
catechols, and cinnamic acids). We subsequently extracted 
the species pair matrices of chemical distances from the 
dendrograms (cophenetic function from stats package). 
Finally, we used the chemical distance matrices of these 
three species to calculate the total, high-volatility, and 
low-volatility chemical diversity for all sampled plots. All 
values were assessed using Rao’s quadratic entropy index 

with the raoD function in the Picante package for R (Rao 
2010; Ricotta and Moretti 2011; Kembel et al. 2012). We 
used Rao’s index for two main reasons. First, Rao takes 
into account the species chemical differences: a community 
with a high Rao chemical diversity will comprise plants 
that are very different in chemical composition, and a com-
munity with low Rao chemical diversity will have species 
with similar chemical composition. Second, Rao can also 
account for the differences in relative abundance of Piper 
species within each plot.

Phylogenetic diversity

To control for the potential effect of phylogeny on Piper 
herbivory and chemical similarity, we constructed a phy-
logenetic tree of all sampled Piper species. Samples of 
leaves were collected to perform sequencing of the ITS and 
the chloroplast intron psbJ-petAx for phylogenetic analy-
sis (following Jaramillo et al. 2008). The resulting phy-
logeny was concurrent with all current phylogenetic and 
taxonomic data (Fig. S2). We used this phylogenetic recon-
struction to calculate the Rao phylogenetic diversity index 
of each plot, again using the Picante package. Similar to the 
chemical indices, Rao’s phylogenetic diversity takes into 
account species phylogenetic distances and species rela-
tive abundance. Our measures of plant (Gini–Simpson) and 
phylogenetic and chemical diversity (Rao quadratic index) 
are ones that are relevant to the searching herbivore, i.e. 
they measure the probability that the searching herbivore 
will encounter a new plant species based on chemical and 
phylogenetic similarity.

Statistical analysis

We analyzed the data using generalized linear mixed effects 
models (GLMM). To test the role of chemical diversity 
on Piper herbivory, we assessed the effect of total chemi-
cal diversity, Piper phylogenetic diversity, and non-Piper 
diversity (as fixed effects) of each Piper patch on total, 
generalist, and specialist herbivory suffered by each Piper 
plant (models A.1, A.2, and A.3, respectively; see Table 
S1 in Supporting Information). In all of these models, we 
controlled for light and Piper diversity (random effects). 
We also assessed the effect of high-volatility diversity, low-
volatility diversity, Piper phylogenetic diversity, and non-
Piper diversity (as fixed effects) on Piper generalist and 
specialist herbivory (models B.1 and B.3, respectively), 
again controlling for light and Piper diversity (random 
effects). In all models, the experimental unit was the Piper 
plot. We also evaluated three models to assess the effect 
of Piper taxonomic diversity on herbivore damage (Table 
S2, models C.1, C.2, and C.3). Model fit was evaluated 
via the Akaike information criterion (AIC) and maximum 
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likelihood tests (see Supporting Information for details on 
model construction and model selection). All models used 
the maximum likelihood estimation method, and models 

were analyzed using R 2.15 (R Core Team 2012) and the 
nlme package with the functions lme and anova (Pinheiro 
et al. 2016). Finally, given that different measures of diver-
sity can be correlated, all beyond-optimal models were 
checked for the possible effect of multicollinearity on our 
analysis by calculating the variable inflation factor (VIF).

Results

After controlling for light and species diversity, the final 
optimal generalized linear mixed model showed that the 
total chemical diversity in a plot had a significant negative 
effect on total herbivore damage; higher levels of chemi-
cal diversity within a plot were associated with lower lev-
els of herbivore damage (model A.1; VIF < 2.4; Tables 1, 
S1; Fig. 1a). The mean leaf area loss in the most chemi-
cally diverse and least chemically diverse plots was 4.5 
and 11.1 %, respectively. An identical pattern was found 
for the effect of total chemical diversity on specialist her-
bivory (model A.3; VIF < 2.2, Fig. 1c). The final model for 
generalist herbivory included non-Piper diversity, Piper 
phylogenetic diversity, and Piper total chemical diversity 
(model A.2; VIF < 2.4; see Tables 1, S1). Only total chemi-
cal diversity, however, had a significant effect on generalist 
herbivory (model A.2; Table 1; Fig. 1b). 

High-volatility chemical diversity had a significant nega-
tive effect on specialist herbivory (model B.1; VIF < 1.2; 
Tables 1, S1; Fig. 2). In contrast, higher levels of low-vola-
tility diversity had a significant negative effect on general-
ist herbivory (model B.2; VIF < 1.2; Tables 1, S1; Fig. 2). 
The model selection procedure showed that high-volatility 
chemical diversity did not improve the model explaining 
generalist herbivory (model B.2), and that low-volatility 
chemical diversity did not improve the model explain-
ing specialist herbivore damage (model B.1, Tables 1, S1; 
Fig. 2). Furthermore, adding phylogenetic Piper diversity 

Table 1  Results from the generalized linear mixed model for the 
optimal models

Complete models and details of model selection procedure can be 
found in the supplementary information. Random variables are shown 
in parentheses. Variables with an asterisk (*) show a statistically sig-
nificant effect (p < 0.05)

Estimate df t p value

Model A.1

 Total herbivory = total chemical diversity + (light) + (Piper 
diversity)

  Total chemical diversity* −0.06 1, 79 −3.94 0.0001

Model A.2

 Generalist herbivory = total chemical diversity + Piper phyloge-
netic diversity + non-Piper diversity + (light) + (Piper diversity)

  Total chemical diversity* −0.02 1, 27 −3.84 0.0006

  Piper phylogenetic diversity 0.005 1, 72 1.4 0.16

  Non-Piper diversity −0.51 1, 76 −1.04 0.30

Model A.3

 Specialist herbivory = total chemical diversity + (light) + (Piper 
diversity)

  Total chemical diversity* −0.07 1, 79 −4.54 <0.0001

Model B.1

 Specialist herbivory = high-volatility chemical diversity + Piper 
phylogenetic diversity + (light) + (Piper diversity)

  High-volatility chemical diver-
sity*

−0.14 1, 78 −2.34 0.02

  Piper phylogenetic diversity* −0.09 1, 78 −2.12 0.03

Model B.2

 Generalist herbivory = low-volatility chemical diversity +  
(light) + (Piper diversity)

  Low-volatility chemical diver-
sity*

−0.18 1, 75 −2.91 0.004

Generalist herbivore damage
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Fig. 1  The different panes show the relationship between total (a), 
generalist (b), and specialist (c) herbivore damage (percentage of 
leaf area removed) and total Piper volatile chemical diversity (Rao’s 

index). Each point represents an experimental plot. Grey lines are lin-
ear regressions, and the values for the regressions are shown in the 
upper-right corner of each plot



1204 Oecologia (2016) 181:1199–1208

1 3

improved only the model that explained specialist her-
bivory (model B.2; Tables 1, S1). See the general results 
from the plant, herbivory, and chemical surveys in the Sup-
porting Information.

Discussion

The overall results from this study suggest that community-
wide levels of chemical diversity influence plant–herbivore 
interactions. We found that plots with higher levels of total 
Piper chemical diversity were associated with lower levels 
of total, generalist, and specialist insect herbivory. Further-
more, this pattern held true after controlling for non-Piper 
diversity, Piper taxonomic diversity, light availability, and 
Piper phylogenetic relationships. In addition, we found that 
different kinds of chemical diversity affected specific guilds 
of insect herbivores differentially, in this case specialist and 
generalist herbivores. Plots with higher levels of high-vol-
atility chemical diversity had significantly lower special-
ist insect herbivory, while plots with higher low-volatility 
chemical diversity showed lower levels of damage caused 
by generalist insect herbivores. Thus, the Piper commu-
nity composition growing around an individual Piper plant 
at the study site influenced the amount of damage that the 
plant received from its herbivores. This neighborhood effect 
is apparently influenced mainly by the presence of conspe-
cifics and congeners, not by plants from other families. 

We show here that the effects of neighborhood chemical 
diversity on the amount of herbivore damage appear to be 
independent of taxonomic and phylogenetic plant diversity. 
Two mechanisms that might explain the effects of chemi-
cal diversity on the local plant herbivore damage found in 
this study are (1) the resource concentration principle (Root 
1973) and (2) the semiochemical-diversity hypothesis 
(Zhang and Schlyter 2003; Randlkofer et al. 2010).

Resource concentration hypothesis

Root’s resource concentration hypothesis states that the 
amount of herbivore damage experienced by a given plant 
will depend on the encounter rate between the plant and its 
herbivores. In more diverse plant assemblages, a particu-
lar plant host will have a lower relative abundance than in 
a simpler, less diverse community. Insect herbivores have 
been reported to feed upon tissue containing a limited set of 
plant secondary compounds, due to evolutionary (Becerra 
1997; Becerra and Venable 1999), metabolic (Freeland and 
Janzen 1974; Scriber 2002; Marsh et al. 2006), and behav-
ioral constraints (Fernandez and Hilker 2007; Schröder 
and Hilker 2008; Cheng et al. 2013). Therefore, it is also 
likely that an increase in local plant chemical diversity will 
reduce the encounter rate between the insect herbivore and 
chemically compatible plant hosts, resulting in a compara-
ble reduction in the plant herbivore damage.

Fig. 2  The different panes 
show the relationship between 
high- and low-volatility 
chemical diversity (Rao’s index) 
and generalist and specialist 
herbivore damage (percentage 
of leaf area removed). Each 
point represents an experimen-
tal plot. Grey lines are linear 
regressions, and the values for 
the regressions are shown in 
the upper-right corner of each 
plot. a Percentage of general-
ist herbivory vs. high-volatility 
chemical diversity. b Percentage 
of generalist herbivory versus 
low-volatility chemical diver-
sity. c Percentage of specialist 
herbivory vs. high-volatility 
chemical diversity. d Percentage 
of specialist herbivory vs. low-
volatility chemical diversity
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Another prediction that can be made from Root’s 
hypothesis is that changes in chemical diversity will have 
a stronger effect on herbivores that feed on a small set of 
plant secondary metabolites (specialists) than on general-
ists who are able to feed on many plant species with very 
diverse defense chemistry. Thus, the significant effect of 
total plant chemical diversity on specialist herbivores found 
in this study supports this hypothesis.

Semiochemical‑diversity hypothesis

Herbivore chemical disorientation due to local plant chemi-
cal complexity can also influence plant–herbivore inter-
actions. The semiochemical-diversity hypothesis (Zhang 
and Schlyter 2003) states that complex plant communities 
will have greater secondary compound diversity than sim-
pler communities, and that these higher levels of chemical 
diversity are likely to pose a challenge to herbivore orien-
tation, by negatively affecting their ability to find, recog-
nize, or accept a particular plant host (for similar ideas see 
Schröder and Hilker 2008; Dicke and Baldwin 2010; Jactel 
et al. 2011; Party et al. 2013; Beyaert and Hilker 2014). For 
example, combinations of specific plant odors can mask 
host chemical cues or even repel insect herbivores (Party 
et al. 2013). By interfering with the herbivore’s ability to 
track critical plant–host chemical cues, higher levels of 
plant chemical diversity could strongly affect herbivore–
host encounter rates, thus reducing the local levels of plant 
damage caused by herbivores. Our results are consistent 
with this hypothesis.

Another prediction that can be drawn from this hypoth-
esis is that the chemical disorientation effect of higher 
chemical diversity is likely to have a stronger effect on her-
bivores that rely heavily on volatile secondary metabolites 
for finding suitable hosts. In the case of Piper herbivores, 
we do not know which species use volatiles to find their 
host plants, but our results suggest that at least a subset of 
Piper herbivores do so (specialists). It is also important 
to note that these two mechanisms (resource dilution and 
chemical disorientation) are not mutually exclusive, and 
that both could act simultaneously in natural systems.

Chemical diversity and herbivore natural enemies

Another mechanism that has been proposed to explain the 
relationship between diversity and plant–herbivore interac-
tions is the enemy hypothesis (Root 1973). This hypoth-
esis states that habitats with higher plant diversity can 
sustain or attract a higher diversity of herbivore predators 
and parasitoids. Although it is difficult to imagine how 
chemical diversity per se could directly affect the diver-
sity of generalist and opportunistic herbivore consumers, 
the chemical disorientation effect could alter the ability of 

the specialized natural enemies of herbivores (particularly 
hymenopteran parasitoids) to find their prey (Wäschke 
et al. 2013). For Piper herbivores specifically, Eois cater-
pillars, for example, are frequently parasitized, resulting in 
significant mortality rates (Connahs et al. 2009; Richards 
et al. 2010). Nevertheless, recent studies have suggested 
that parasitoids are attracted to a combination of plant 
and herbivore volatile metabolites, and are therefore less 
affected by changes in plant species and chemical diversity 
alone (Wäschke et al. 2014; Kruidhof et al. 2015). In order 
to determine the net effect of chemical disorientation on 
plant herbivore damage—directly on herbivore attack and 
indirectly on parasitism—more specifically designed labo-
ratory and field experiments are needed.

Effects of low‑ and high‑volatility chemical diversity

After partitioning the plot’s chemical diversity into high-
volatility and low-volatility groups, it was possible to 
assess the effect of specific groups of secondary metabo-
lites on plant herbivore damage. These two groups of sec-
ondary compounds showed markedly contrasting effects on 
generalist and specialist herbivore damage.

Specialist herbivores are generally better adapted to cir-
cumventing or overcoming low-volatility secondary plant 
metabolites (e.g. alkaloids and glucosinolates; Orians 
2000; Lankau 2007). Therefore, it is reasonable to expect 
that these herbivores will not be especially susceptible to 
changes in the diversity of low-volatility compounds. Fur-
thermore, specialist herbivores are expected to feed on a 
small subset of Piper species within our plots (Connahs 
et al. 2009; Dyer et al. 2010), and it is thus unlikely that 
the presence of different low-volatility compounds in the 
surrounding non-host plants could affect the amount of 
damage these specialist insects cause (Macel et al. 2002; 
Macel and Vrieling 2003; Cheng et al. 2013). In contrast, 
despite the fact that specialist herbivores are also expected 
to have highly developed host search mechanisms, it is 
likely that higher levels of community-wide high-volatility 
chemical diversity can affect their ability to track the spe-
cific chemical cues from their hosts, due to odor masking 
and semiochemical redundancy (Schröder and Hilker 2008; 
Randlkofer et al. 2010; Bruce and Pickett 2011; Party et al. 
2013; Zakir et al. 2013).

In contrast, generalist herbivores feed on a wide range 
of plants, and are less likely to track specific high-volatility 
chemical cues from a particular host plant in order to find 
a suitable host (e.g. Vargas et al. 2005). Thus, changes in 
the community’s high-volatility diversity are less likely 
to affect their ability to find a suitable plant for feeding. 
Instead, low-volatility diversity was found to negatively 
affect generalist herbivore damage. Researchers have 
reported that generalist herbivores are less able to cope 
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with specialized defenses of a particular plant host (Van 
Dam et al. 1995; Macel 2011; Ali and Agrawal 2012; 
Lampert 2012), and this is true for some Piper generalist 
herbivores (Richards et al. 2010). Given that most of the 
low-volatility secondary compounds found in this study 
included alkaloids (including amides and imides), flavo-
noids, and catechols, it is reasonable to expect that a higher 
diversity of such compounds could reduce the number of 
palatable hosts available to generalist herbivores.

The mechanisms linking chemical diversity to either 
generalist or specialist herbivory appear to differ. On the 
one hand, our data suggest that the effect of chemical diver-
sity on the reduction of specialist herbivore damage is the 
result of semiochemical saturation, redundancy, or odor 
masking (semiochemical diversity hypothesis). On the 
other, generalist herbivores appear to be affected by low-
volatility diversity. Given that low-volatility compounds are 
less likely to be used as cues for host-finding by generalist 
herbivores, this pattern suggests that the effect of high low-
volatility diversity on generalist herbivory is the result of 
“resource dilution” (Root’s hypothesis). Furthermore, the 
different effects of high-volatility and low-volatility chem-
istry on different guilds of herbivores could also explain the 
strong difference in the patterns of high-volatility and low-
volatility similarity across Piper species (Fig. S3).

Finally, it is important to note that the inclusion of Piper 
phylogenetic diversity did not improve most of the mod-
els used for this study. This result is likely because Piper 
chemical diversity does not show a significant phylogenetic 
signal for the 27 Piper species found in our plots (Salazar 
et al. 2013). It is generally assumed that insect herbivores 
are more likely to feed on closely related plant species, 
because these species are more likely to share similar traits 
than are distantly related species. When this assumption 
does not hold true (see also Kursar et al. 2009), community 
phylogenetic complexity will not necessarily have a sig-
nificant effect on the encounter rate between herbivore and 
chemically compatible plant hosts. Lastly, the small effect 
that phylogenetic diversity had on specialist herbivory 
could either be (1) linked to phylogenetically conserved 
anti-herbivore traits not measured in this study or (2) evi-
dence of a coevolutionary history between Piper and their 
specialized herbivores (Eois).

Conclusions

Our results suggest that interactions between Piper and its 
natural enemies at the community level are significantly 
affected by local secondary metabolite diversity. These 
results also underscore the importance of studying differ-
ent biologically relevant dimensions of community com-
plexity when assessing the relationship between diversity 

and plant–herbivore interactions. Different measures of 
diversity will likely be associated with different herbivore 
guilds and taxonomic groups. Additionally, our results 
also suggest that these patterns can be mediated by mul-
tiple mechanisms acting in concert (e.g. resource con-
centration and semiochemical-diversity). Whether these 
results apply to other diverse tropical genera, or even 
temperate genera such as Solidago, Salix, and Quercus, 
remains to be seen.
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