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 ‘ spatial scale ’ . Here, I will try to extend their eff orts to work 
towards a more precise understanding about  ‘ spatial scale-
dependence ’ . 

 Spatial scale-dependence, in one form or another, is 
ubiquitous in ecology. But it is this plurality of forms that is 
problematic when there is not a formal way to distinguish 
them. I propose a taxonomy of spatial scale-dependence, and 
seek to establish an associated formal vocabulary. It is my 
hope that this vocabulary will encourage more precise state-
ments and thereby improved generalizations. Fundamentally, 
the vocabulary will seek to precisely describe the subject of 
scale-dependence (data, model parameters, model perfor-
mance or model structure), and what component of scale 
it is sensitive to (grain, extent). I also make a distinction 
between two classes of scale-dependence: perceived scale-
dependence (the appearance of scale-dependence as a result 
of imperfect data or models) and true scale-dependence (true 
changes with scale). 

 I begin by illustrating the need for these distinctions with 
a set of examples demonstrating the conditions under which 
certain kinds of scale-dependence can and cannot arise. I 
will then propose the taxonomy of scale-dependence, using 
a simple vocabulary that I believe is necessary and suffi  -
cient for clear communication of scale-dependence. Finally, 
I conclude with a brief examination of scale-dependence in 
biotic interactions, a topic that I think has suff ered from 
unclear communication about what, exactly, is thought to 
be scale-dependent.  
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 In an infl uential commentary, McGill (2010) began with an 
analogy to physics, noting that the explanatory power of 
Newton ’ s laws across a massive range of scales is unlikely to 
be replicated in ecology. Ecology, unfortunately, seems to be 
characterized by strong spatial scale-dependence, making 
general laws unlikely. I like the analogy, but take a somewhat 
diff erent lesson from it. Newton ’ s laws were a revelation pre-
cisely because of their ability to explain seemingly distinct 
phenomena across a wide range of scales under one theory. 
Th is, I think, must be the challenge for ecologists. Our 
science is at the stage of identifying how patterns and pro-
cesses change with scale. Ultimately, though, we also need to 
understand why these change with scale. 

 Reviewing the rise of the concept of scale in ecology, 
Schneider (2001) argued that scale had become a central 
concept in ecology, and may be poised to become a unifying 
concept, providing  ‘ theoretical unity ’  for the fi eld. Indeed, 
recognition of the central importance of spatial scale in 
ecology has increased dramatically in the last 25 yr (Wiens 
1989, Levin 1992, Schneider 2001, Sandel and Smith 2009, 
Chave 2013). However, the potential for scale to become 
a unifying concept has gone relatively unrealized. In part, 
this is because scale-dependence is often discussed in a rather 
informal way. Th ough informal language is not necessarily 
a problem in itself, it becomes one when imprecise usage 
impedes generalization by confusing fundamentally diff er-
ent concepts. Previous papers (Scheiner et   al. 2000) have 
worked towards clearing up ambiguity about the concept of 

                             Towards a taxonomy of spatial scale-dependence      

    Brody     Sandel            

  B. Sandel (brody.sandel@biology.au.dk), Dept of Bioscience, Aarhus Univ., Ny Munkegade 114, DK-8000 Aarhus C, Denmark.                               

 Spatial scale-dependence is a ubiquitous feature of ecological systems. Th is presents a challenge for ecologists who seek to 
discern general principles. A solution is to search for generalities in patterns of scale-dependence  –  that is, what kinds of 
things are scale-dependent, in what ways, and why? I argue that this is likely to be a productive way forward for ecology, 
but that progress in this direction is currently hindered by the confl ation of a set of distinct concepts under the category 
of  ‘ scale-dependence ’ . Here, I propose a taxonomy of spatial scale-dependence that categorizes its major types in hopes 
of moving towards a more formal and unambiguous vocabulary. I argue that three major distinctions are necessary and 
suffi  cient for this goal: that between grain size and extent (the scale component), between data and models (the subject), 
and between true and perceived scale-dependence (the class). I illustrate the need for these distinctions with a set of 
examples demonstrating causes of diff erent types of scale-dependence. I then describe how this taxonomy relates to an array 
of scale-related concepts from other fi elds. Finally, I discuss the generalization that biotic interactions are most important 
at small scales in light of this taxonomy.   



359

Intecol special issue

 Examples  

 General methods 

 In these examples, I will use gridded surfaces that display 
spatial autocorrelation. Such a surface might represent soil 
nutrient concentrations, annual precipitation, a species ’  
population density, or the pattern of a species ’  resource use 
intensity. Surfaces were created in R using the gstat package 
(Pebesma 2013) to generate random surfaces with known 
variogram properties. I used a nugget of 0 and three ranges 
(5, 15 and 45) to generate surfaces with diff erent covari-
ance structures. All variograms used an exponential model. 
Random realizations of these surfaces were obtained with the 
predict.gstat() function, on a regular 128    �    128 grid. Each 
realization was z-scaled (mean    �    0, standard deviation    �    1). 
Let  λ  r  indicate a random realization of such a surface where 
 r  indicates the range of the variogram. Th roughout the 
manuscript, these surfaces will be referred to as  ‘ spatially 
structured ’ , with  ‘ fi ne spatial structure ’  indicating a surface 
with a small variogram range (i.e.  λ  5  has fi ne spatial struc-
ture [or small patch sizes] and  λ  45  has coarse spatial structure 
[or large patch sizes]) 

 Th ese gridded surfaces were then sampled with diff erent 
sampling schemes using varying spatial grains and extents. 
Grain refers to the size of a sampling unit such as a pixel 
in a satellite image or a vegetation plot, while extent refers 
to the total area over which these units are distributed on 
the surface (Turner et   al. 1989, Scheiner et   al. 2000). Here, 
sampling units were always square and their sizes are speci-
fi ed by their side length as a fraction of the side length of the 
total surface. Extent was modifi ed in two ways. In examples 
using a pair of sampling units, extent was increased by mov-
ing those units apart from one another along the surface, 
increasinging the distance between them. In examples using 
more units, extent was modifi ed by using various sizes of 
square subsets of the surface. In all examples, I used 100 
replicate simulations, unless otherwise noted.   

 Example 1: measurements 

 Given a continuous spatial surface, we can make vari-
ous measurements of that surface in plots of varying sizes, 
thereby altering spatial grain. What kind of measurements 
should change with grain size? Th e mean value within a plot 
will not change systematically, since the mean value of the 
entire surface is the expected value of a draw of any size from 
that surface. Th e within-plot variance, on the other hand, 
increases with increasing plot size (Fig. 1A), owing to spatial 
autocorrelation in the surface. Th e fi ner the spatial structure 
(i.e. the smaller the range of the variogram), the more rap-
idly within-plot variance increases. In the same way, as a pair 
of equal-sized sampling plots are moved apart on the sur-
face (thereby increasing extent), the absolute diff erence in 
the mean values of the surface within those plots increases 
(Wiens 1989). Th is increase is rapid for surfaces with fi ne 
spatial structure (Fig. 1B, red lines) and gradual for those 
with coarse structure (Fig. 1B, blue lines). Grain size also 
infl uences this relationship, with larger grains producing 
smaller between-plot diff erences at a given distance (dashed 
compared to solid lines, Nekola and White 1999, Lennon 
et   al. 2001, Keil et   al. 2012). Th is distance-decay relation-
ship is particularly pronounced for surfaces with fi ne spatial 
structure. 

 Th e diff erence in scaling between within-plot means and 
within-plot variance is a simple example of an important 
general phenomenon  –  the method that we use to aggre-
gate a variable across diff erent scales infl uences the scaling 
behavior we observe. Th us, it is not correct to ask whether 
a particular measurement is grain-dependent without also 
specifying how we intend to aggregate it across grain sizes 
(e.g. mean, variance, quantile, maximum, etc.). 

 Th e interaction between grain size and extent leads to 
an interesting property. As sampling plots are spread over 
a larger extent or become smaller-grained, the diff erences 
between them increase. Th e combined eff ect of changing 
grain size and spatial extent on between-plot diff erences can 

  Figure 1.     Th e relationships between grain size and within-plot variation (A) and extent and between-plot diff erences (B). Surfaces were 
simulated with fi ne, moderate or coarse spatial structure ( λ  5 ,  λ  15 ,  λ  45 , examples in insets with colored boxes matching plotted curves). In 
(A), these surfaces were sampled with a series of nested square units ranging in grain size from 1/128 to 1 (relative to the side length of the 
entire surface). Th e lines show means of 1000 simulations, while the colored intervals show the interquartile range. In (B), pairs of plots 
with fi xed size were moved apart from one another to generate increasing spatial extents. Th e lines show the mean absolute diff erence across 
1000 simulations as a function of distance, surface spatial structure and grain size.  
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be visualized as a surface with isoclines of constant diff er-
ence (Fig. 2). Th ese isoclines describe a sort of equivalence 
between grain size and extent. On a  λ  5  surface (Fig. 2A), 
grain size has a very large eff ect on between-plot diff erence, 
while extent is less important  –  thus a small increase in grain 
size requires a large increase in extent to off set it. Extent plays 
an increasingly important role as the spatial structure of the 
surface becomes coarser ( λ  45,  Fig. 2B). In this case, a rela-
tively large increase in grain size is needed to off set a small 
increase in spatial extent. 

 Species richness represents an interesting special case of 
within-plot variation, measured as the number of classes 
(species) observed, rather than a continuous measure such as 
standard deviation (Connor and McCoy 1979, Palmer and 
White 1994). In general, as grain size increases, species rich-
ness increases for two major reasons (Scheiner et   al. 2000). 
First, more individuals are sampled, which results in cor-
respondingly more species being sampled. Second, a wider 
range of environmental conditions is sampled, so, assum-
ing that species show varying environmental preferences, a 
wider range of species will be observed (Connor and McCoy 
1979). Th e latter mechanism means that the rate of increase 
of species richness is related to the spatial structure of the 
environment  –  fi ner structure should contribute to more 
rapid increases in richness over small grain sizes (analogous 
to Fig. 1).   

 Example 2: relationships between pairs of variables 

 We can next ask how the relationship between spatially 
structured variables changes with grain and extent. When 

arguing that the relationship between a pair of variables X 
and Y is scale-dependent, I suspect that most ecologists have 
in mind something like a regression relationship Y    �    f(X)  �  
 ε , where something about the regression changes with grain 
size or extent. Th ree important changes that could occur 
are shifts in the coeffi  cient estimates or their errors (model 
parameters), changes in the overall fi t of the model (model 
performance), or changes in which variables are included 
in a model and the functional forms that are fi t (model 
structure), though these alternatives are often not explicitly 
distinguished. Nevertheless, fundamentally diff erent mecha-
nisms can lead to these diff erent types of scale-dependence. 
For example, limiting the extent of sampling an underly-
ing linear relationship reduces the R 2  but does not bias the 
coeffi  cient estimate (Fig. 3A). 

 For illustration, consider two scenarios. In the fi rst, 
X    �     λ  45  and Y    �    X  �   ε , where  ε     �     λ  5 . In the second sce-
nario, the spatial structures are reversed: X    �     λ  5  and  ε     �     λ  45 . 
We can now ask how changing grain and extent aff ect the 
perceived relationship between X and Y (Fig. 4). Note that 
changes in the regression model are due only to changes in 
the spatial structure of X because in both cases Y    �     λ  5   �   �  45 . 
I examined three grains, with linear dimensions of 1/128, 
1/32 and 1/8, and three extents: 1/16, 1/4 and the entire 
surface, and ask whether changing the spatial structure of the 
predictor variable alters model parameters or performance. 

 Th e coeffi  cient estimate is scale-independent. All coef-
fi cient estimates correctly center on 1 regardless of spatial 
structure, grain or extent. In general, and as expected, the 
best coeffi  cient estimates (most tightly clustered around 1) 
are obtained with a large extent. Grain exerts relatively little 
infl uence on the distribution of coeffi  cients, except as the 
grain size approaches the extent (Fig. 4). 

 On the other hand, model performance (here, R 2 ) is 
scale-dependent, increasing with grain size and extent in the 
fi rst scenario and decreasing with grain size and extent in the 
second (Fig. 4). Th is occurs because the infl uence of the  λ  5  
noise in the fi rst case declines as grain size increases, while 
increasing extent unveils more of the true linear relationship. 
Both contribute to higher R 2 . In the second case, R 2  declines 
with grain size because larger grains tend to smooth out the 
important fi ne structure in X, while larger extents intro-
duce the full range of  λ  45  noise, increasing the infl uence of 
the noise over the signal. 

 Th e dependence of model performance on grain and 
extent has interesting consequences in applications involv-
ing multiple regression and model selection. Various model 
selection procedures such as stepwise or all-subsets selection 
eliminate variables from a model based on their contribution 
to a measure of model performance such as AIC (Symonds 
and Moussalli 2011). Th us, while the coeffi  cient estimate 
for a particular variable might not change with scale, the 
probability that it will be included in the selected model 
can change. Th us, model structure can also be infl uenced by 
spatial scale.   

 Example 3: more complex relationships 

 In this example, I will consider relationships among an 
environmental variable (ENV) and interacting predator and 

  Figure 2.     Th e relationship between grain size and spatial extent and 
between-plot diff erences. Given 100  λ  5  (A) or  λ  45  (B) surfaces, each 
was sampled at grain sizes ranging between 1/128 and 16/128 (1/8) 
in the linear dimension, across a wide range of extents (distance 
between a plot pair). Th e colors show the absolute diff erence 
between the plot mean values (red corresponds with large diff er-
ences and blue with small). Note that the color scales diff er between 
the two panels. Lines show isoclines of constant diff erence. With 
decreasing extent and increasing grain size, between-plot diff er-
ences decrease. Th is increase is most rapid when increasing grain 
size when the surface shows fi ne spatial structure and most rapid for 
increasing extent when spatial structure is coarse.  
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 Notably, though, all of these estimates are wrong! Large 
grains or small, none produced the correct estimate of the 
eff ect of predator on prey abundance ( – 0.5). All estimates 
were strongly biased towards zero. Th is problem arises 
because of the omission of a critical covarying variable from 
the model. When we supplement the PREY    �    f(PRED)  �  
 ε  model with the environmental variable (PREY    �    f(PRED, 
ENV)  �   ε ), the coeffi  cient estimate for the predator eff ect 
becomes correct. Further, it no longer depends on grain 
size, except that larger grains mean smaller sample sizes and 
therefore higher variance around the median estimate. Th us, 
we have to be very careful here to distinguish what an eff ect 
is from what we can detect. Th is is the distinction between 
true scale-dependence and perceived scale-dependence. 

 Another way to see this problem is that the simple linear 
regression of PREY    �    f(PRED)  �   ε  violates an important 
assumption  –  the residuals are not spatially independent. 
Rather than correcting this problem by incorporating 
the environmental covariate (which is possible here, but 
probably not possible to do perfectly in most real appli-
cations), it could also be possible to remove the bias by 
using a spatial regression method, such as simultaneous 

prey species that respond to that variable. Predator abun-
dance (PRED) was defi ned as PRED    �    ENV  �   ε  1  and prey 
abundance (PREY) was PREY    �    ENV  –  0.5    �    PRED  �   ε  2  
where  ε  1  and  ε  2  are spatially structured noise ( λ  5 ,  λ  15  or  λ  45 ). 
I then sampled ENV, PREY and PRED using grains with 
linear dimensions of 1/128, 1/32 and 1/8 and asked if 
the relationship between PRED and PREY depends on 
grain size. 

 It is reasonable to think that it will. At large grain sizes, 
PRED and PREY might be positively associated, occupying 
areas with similar environmental conditions. However, at a 
fi ne grain containing limited environmental variation, more 
predators means fewer prey, leading to a negative correla-
tion (Shea and Chesson 2002). Indeed, when ENV    �     λ  45  
and  ε  1  and  ε  2     �     λ  5 , this predicted dependence on grain size 
does appear (Fig. 5A). However, other variations are also 
possible. If all three surfaces are  λ  15 , there is no grain-
dependence (Fig. 5B), while if ENV    �     λ  5  and  ε  1  and 

 ε   2   �  λ  45 , the reverse pattern appears (Fig. 5C). Th us, depend-
ing on the spatial structure of the environment and noise, 
large or small grains can give the most accurate estimate of a 
biotic interaction. 

  Figure 3.     Th e eff ect of limiting the extent of sampling of the predictor variable on linear (A) and quadratic (B) regression. Given the full 
range of X (between 0 and 1), both linear and quadratic relationships are well detected, with coeffi  cients correctly centered on 1 (A) and 
1 and  – 1 (B), and high R 2  values. Limiting the extent of sampling of X to (0, 0.2) (orange colors) does not bias parameter estimates, but 
does produce a large increase in uncertainty in the estimates and a reduction in R 2 . Th us, the coeffi  cient estimate is not extent-dependent, 
while the explanatory power is. In the boxplots, the middle line indicates the median, the box shows the interquartile range and the 
whiskers show the full range of estimates. Grey boxes indicate the full extent and orange the limited extent across 1000 simulations.  
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of shared responses to environmental variation, though no 
environmental covariates were considered in the study.   

 Example 4: true scale-dependence 

 If the above example illustrates perceived scale-dependence, 
what can lead to true scale-dependence? Consider two 
plant species, A and B. A is indiff erent to the presence or 
absence of B, while B is both competitively suppressed and 
facilitated by A, but over diff erent distances. An individual 
of species A reduces the nearby population of B (perhaps 
because A shades out B), while increasing the population at 
greater distances (perhaps because A supports a population 
of pollinators that also benefi t species B, for related empiri-
cal examples, see van de Koppel et   al. [2006] and Hegland 
[2014]). Th e population density surface of A (P A ) thus pro-
duces two relevant interaction surfaces  –  one competition 
surface (C A ) that is tightly constrained around the popula-
tion of A, and one facilitation surface (F A ) that is loosely 
constrained around A ’ s population. Th ese interaction sur-
faces can be obtained by applying a moving window fi lter to 
P A , where the window is narrow for the negative interaction 
and wide for the positive interaction. 

 Under these circumstances, the eff ect size of P A  on the 
population density of B (P B ) can depend on the grain 

autoregressive models (SAR, Kissling and Carl 2008, Beale 
et   al. 2010). Th us, I asked whether an SAR model could 
produce more accurate estimates of the true species inter-
action. I used error SAR models with rook ’ s-case neigh-
borhoods and row-standardized weighting, though results 
were consistent under alternative model specifi cations 
(Supplementary material Appendix 1). Fitting SAR mod-
els in the scenario where ENV    �     λ  45 ,  ε  1     �     λ  5  and   ε  2     �      λ  5  
produced less biased coeffi  cient estimates. For the moder-
ate grain, standard linear models produced a model median 
slope of  – 0.032, while SAR models produced a median of 
 – 0.351. For the large grain, standard models had a median of 
0.182, while SARs gave  – 0.037. For the small grain, fi tting 
SAR models was computationally infeasible. SAR models 
are an imperfect solution, but may provide less biased coef-
fi cient estimates when the environmental covariates cannot 
otherwise be controlled. 

 Cases where species interactions can be confounded with 
environmental variations are common. In his groundbreak-
ing paper on scale in ecology, Wiens ’  (1989) fi rst example 
of scale-dependence gives several cases where shared envi-
ronmental preferences over large scales appear to swamp the 
local eff ects of competition. Veech (2006) also provides an 
example of this situation, showing that positive associations 
in the distributions of potentially competing birds are more 
common than negative associations. Th is may be because 

  Figure 4.     Th e eff ect of changing grain size and extent on the regression between spatially structured variables, where Y    �    X  �   ε . In (A), X 
is  λ  45  and  ε  is  λ  5 , while in (B) this is reversed. Each variable was sampled with narrow, medium and broad extents (using 1/16, 1/4 or the 
entire surface) and small, medium or large grains (linear dimensions of 1/128, 1/32 or 1/8 of the entire surface). In all cases, the estimated 
regression coeffi  cients correctly centered on 1. However, the explanatory power of the model (R 2 ) was scale-dependent, increasing with 
grain size and extent in (A) and decreasing with grain size and extent in (B). Th is occurs because of the diff erent spatial structures of X 
and  ε  in (A) and (B). Th e middle line in the boxplots shows the median, the boxes the interquartile range and the whiskers the full range 
across 100 simulations.  
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size. Here, P A     �     λ  5 , C A  was averaged from P A  over 5    �    5 
windows and F A  over 15    �    15 windows. Th en, P B  was 
defi ned as P B     �    5    �    F A   –  3.5    �    C A   �   ε , where  ε     �     λ  5 . I used 
three levels of grain size, with linear dimensions of 1/128 
(small), 1/32 (medium) or 1/8 (large) of the surface edge 
length, and fi t linear models according to P B     �    f(P A ), with 
each population variable averaged within plots of the appro-
priate size. Under these conditions, P A  is negatively related 
to P B  in small and medium grains, and positively related 
at large grains (Fig. 6). Th ere is no environmental gradient 
 –  the scale-dependence in the relationship derives entirely 
from intrinsic characteristics of the species ’  interactions. 
Hence, this is an example of true grain-dependence. 

 Th is example also illustrates the fi ne line between scale-
dependence and scale-independence. Here, there was a true 
grain-dependent relationship between the population densi-
ties of species A and species B. However, if we had modeled 
the density of B as a function of the competitive intensity 
and facilitative intensity surfaces from A, there would be no 
grain-dependence.   

 Example 5: averaging over nonlinear functions 

 A very important kind of scale-dependence can arise when 
nonlinear relationships are averaged at diff erent grain sizes 
(Chesson et   al. 2004, Chesson 2012). In general, the average 
of a function is not the function of the average. For example, 
the logarithm of the mean of a vector of numbers is not the 
same as the mean of the logarithms. To illustrate this, con-
sider a surface X with some spatial structure, and a surface 
Y    �    X  –  X 2   �   ε , where  ε  has some spatial structure. Y is a 
nonlinear function of X, so the average value of Y at some 
large grain size will generally not be the same as the value of 
the function evaluated for X aggregated at that same large 
grain. In fact, because the function is concave down, the 
average of the function is less than or equal to the function of 
the average (according to Jensen ’ s inequality, Chesson et   al. 
2004). Th is is illustrated in Fig. 7. Without any aggregation 
(grain size    �    1/128), the correct parabolic relationship is 
fi t, and the model R 2  is high. Aggregating to a larger grain 
sizes (1/8), however, leads to biased parameter estimates 
and smaller R 2  values. Th is eff ect is particularly pronounced 
when X    �     λ  5  and  ε     �     λ  5 , because a larger grain size in this 
case corresponds with a wider sampling of environmental 
heterogeneity within a cell, and therefore a stronger eff ect of 
nonlinear averaging. 

 Nonlinear relationships are probably rather ubiquitous in 
nature, suggesting that this is likely to be a common source 
of true grain-dependence (Chesson 2012).   

 Example 6: unveiling nonlinear relationships 

 In example 2, I showed a case where changing the spatial 
extent infl uenced the explanatory power of a regression rela-
tionship but not its shape (the estimated coeffi  cients cor-
rectly centered on one for all extents). It is also possible for 
changing extent to change the perceived shape of a relation-
ship. Th is can occur when the relationship between a pair 
of variables is nonlinear. A limited extent that captures only 

  Figure 5.     Relationships among simulated predator (PRED) and prey 
(PREY) densities in the presence of a shared environmental prefer-
ence. Here, PRED    �    ENV  �   ε  1  and PREY    �    ENV  –  0.5    �    PRED 
 �   ε  2 . ENV and  ε  surfaces contained various degrees of spatial struc-
ture. In (A), ENV was  λ  45 , and  ε  1  and  ε  2  were  λ  5 . Sampling this 
relationship with small (S, 1/128), medium (M, 1/32) or large (L, 
1/8) grain sizes revealed a negative predator – prey relationship in 
small grains that graded into a positive relationship in large grains 
when the environment was not included in the regression relation-
ship (left panels). However, when the environment was known and 
included, the correct regression slope of  – 0.5 (dotted line) was 
recovered (right panels). In (B), ENV,  ε  1  and  ε  1  were  λ  15 , and the 
coeffi  cient estimates showed no grain-dependence. Finally, in (C), 
ENV was  λ  5 and  ε  1  and  ε  2  were  λ  45 , leading to decreasing coeffi  cient 
estimates with increasing grain size. Again, when the environment 
was known and incorporated in the models, there was no grain-de-
pendence and coeffi  cient estimates became unbiased. Th e middle 
line in the boxplots shows the median, the boxes the interquartile 
range and the whiskers the full range across 100 simulations.  
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elevational gradient (limited extent) can instead suggest a 
linear decrease with elevation. One can imagine that a lim-
ited extent obscures part of a relationship, while increasing 
the extent unveils it. 

a small range in the predictor variable may only reveal part 
of the shape of a complex relationship. For example, spe-
cies richness often shows a hump-shaped relationship with 
elevation (Rahbek 2005), yet incomplete sampling of the 

  Figure 6.     True scale-dependence in the relationship between abundances of two species. Species A both competes with and facilitates 
species B, but over diff erent distances. Competition with A is limited to short distances (5 cell neighborhood, small square in fi rst panel, 
indicated by arrow), while facilitation occurs over longer distances (15 cell neighborhood, larger square in fi rst panel). In this case, a linear 
model of the population density of B (P B ) as a function of the density of A (P A ) shows a negative relationship at small and medium grain 
sizes (S, M, grain sizes of 1/128 and 1/32) and a positive relationship at large grain sizes (L, 1/8). Th e middle line in the boxplots shows the 
median, the boxes the interquartile range and the whiskers the full range across 100 simulations.  

  Figure 7.     Illustration of scale-dependence through nonlinear averaging. In general for nonlinear functions, the average of a function is not 
the same as the function of an average. Here, a relationship of Y    �    X  –  X 2  fl attens out as grain size increases, particularly for surfaces with 
fi ne spatial structure. Th e boxplots show the distribution of coeffi  cients for X, X 2  and R 2  across 100 replicates. Th e middle line shows the 
median, the boxes the interquartile range and the whiskers the full range across 100 simulations.  
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long recognized that the phylogenetic scope of inference can 
be limited  –  this is a major reason that taxonomic names 
often appear in paper titles. I argue that we should give 
the same attention to diff erent kinds of scale-dependence, 
to avoid the temptation to generalize from one kind to a 
fundamentally diff erent kind. Th e examples above illustrate 
three major distinctions, specifi cation of which will, I believe, 
lead to a clear and unambiguous description of spatial scale-
dependence. Th ese are the scale component, the subject of 
scale-dependence, and its class (Table 1).  

 Scale component 

 Many authors have emphasized the importance of under-
standing the infl uence of diff erent scale components (Turner 
et   al. 1989, Wiens 1989, Turner 1990, Scheiner et   al. 2000). 
Still it bears repeating that some things vary with grain and 
not extent, some things vary with extent and not grain, and 
still others vary in opposite ways between the two. Th ey 
are not interchangeable concepts. I therefore suggest that, 
whenever possible, we specify what we mean by saying 
 ‘ grain-dependent ’  or  ‘ extent-dependent ’  in place of the less 
informative  ‘ scale-dependent ’ .   

 Subject 

 By subject, I mean the kind of thing that is scale-dependent. 
I focus on the distinction between scale-dependence of data 
and scale-dependence of models. Data is scale-dependent 
when measured values or summary statistics change as a 
function of sampling scale (grain or extent). For example, 
species richness increases with increasing grain, while the 
dissimilarity between pairs of plots generally increases with 
extent. 

 Models are scale-dependent when estimated parameters, 
model performance or model structure varies with grain size 
or extent. Scale-dependent model parameters can appear in 
regression relationships where slope coeffi  cients are sensitive 
to grain size (such as in example 4 above). Th ey could also 
arise in mechanistic models, if, for instance, a population 
growth rate ( r ) depends on grain size. Scale-dependence of 
model performance could include R 2 , out-of-sample pre-
dictive performance or other related measures. Th ere are 
numerous empirical examples of shifts in both model per-
formance and model parameters with grain size (Hamer and 
Hill 2000, Scheiner et   al. 2000, Rahbek and Graves 2001, 
Chase and Leibold 2002, Brown and Peet 2003, Belmaker 
and Jetz 2011, Sandel and Svenning 2013), though extent 
seems to have received rather less attention (Rahbek 2005, 

 Th is intuition, however, can be somewhat misleading. For 
example, if the true relationship is parabolic, this curvature 
can, in principle, be detected even with data from only part 
of one of the arms (Fig. 2B). Th e situation is actually quite 
similar to the linear variation described above (example 2), 
in that the coeffi  cient estimates for the linear and quadratic 
portions of the model are unbiased even with a very limited 
extent (in this case correctly centering on 1 and  – 1, respec-
tively). However, the variation around these median values 
is large. Th us, there is no scale-dependence of the estimated 
model parameters, but there is an eff ect of the extent on the 
precision of the estimate, and on model R 2 . 

 Th us, if one has theoretical reasons to believe a relation-
ship to be quadratic (or any other specifi c functional form), 
this relationship can be estimated without bias even given 
only a small portion of the full shape. It is, however, likely 
to be estimated with substantial error. Further, related to 
the discussion of model selection procedures above, if the 
non-linear form is not known in advance and one wishes 
to use an automatic method of determining whether a qua-
dratic term is warranted, the extent matters a great deal. 
In this case, using the full extent where the hump-shaped 
relationship is clearly visible, the quadratic model yielded a 
lower AIC value than a linear model in 1000 out of 1000 
instances, whereas the quadratic model was preferred for the 
limited extent in only 22% of cases. 

 Finally, if the non-linear pattern is more complicated, for 
example showing threshold changes (Toms and Lesperance 
2003), then it will typically not be possible to use small 
extents to make inferences about the shape of relationships 
over larger extents.    

 Towards a taxonomy of scale-dependence 

 With these examples in place, I now seek to defi ne the axes 
of spatial scale-dependence and work towards a formal 
vocabulary to describe them. One reason for presenting so 
many examples is that I hope to give a sense of the diversity 
of meanings currently encompassed by  ‘ scale-dependence ’ . 
It can mean that measurements of species richness increase 
with grain size, that a nonlinear relationship between eleva-
tion and species richness is obscured when the spatial extent 
is too small or that the R 2  of the relationship between the 
abundance of two species declines with increasing grain size, 
among other possibilities. Th ese are all very diff erent obser-
vations, so diff erent in fact, that I think it does little good to 
call them all scale-dependence. 

 Th us, I propose a  ‘ taxonomy ’  of scale-dependence, in 
analogy to standard systematic taxonomy. Ecologists have 

  Table 1. Summary of the categories in the taxonomy of scale-dependence.  

Question Category in 
taxonomy Informal defi nition Empirical examples

Data or model? 
  Model parameter, 
performance or structure?

Subject What changes with scale? Palmer and White 1994, Chase and 
Leibold 2002, Davies et   al. 2005

Grain or extent? Component What aspect of scale is it sensitive to? Turner et   al. 1989, Wu et   al. 2002, 
Sandel and Corbin 2010

True or perceived? Class The result of a model or observability 
problem or a real effect?

van de Koppel et   al. 2006, Aue et   al. 
2012, Hegland 2014
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A useful review of the history and terminology of spatial 
scale across the social and natural sciences was provided by 
Marceau (1999). Of particular importance in this history is 
the modifi able areal unit problem (MAUP, Openshaw 1977, 
1984, Fotheringham and Wong 1991). Building on ear-
lier work showing changes in correlation coeffi  cients under 
spatial aggregation of the variables of interest (Gehlke and 
Biehl 1934), the MAUP expresses the diffi  culty that results 
are often scale-dependent, yet our choices of scales is often 
purely operational (based, for example, on a the grain size of 
a satellite image). For example, a study of the MAUP in the 
grain-dependence of multiple regression concluded rather 
discouragingly that the MAUP results in  ‘ highly unreliable 
results in the multivariate analysis of data drawn from areal 
units ’  (Fotheringham and Wong 1991, p. 1041). 

 Much of the work on the MAUP derives from remote 
sensing research (Marceau and Hay 1999). In that fi eld, ter-
minology is quite close to that proposed here, except that 
grain size is sometimes called  ‘ resolution ’  or  ‘ support ’ , and 
extent may simply be referred to as  ‘ area ’  (Cressie 1993, 
Nekola and White 1999). A diff erent kind of vocabulary 
related to spatial scale comes from signal processing and 
the decomposition of complex patterns into combinations 
of simpler patterns with diff erent wavelengths (or frequen-
cies) and amplitudes. Th e classic version of this is Fourier 
analysis, which decomposes a pattern into a combination of 
sine waves. Related methods include principal coordinates 
of neighborhood matrices (PCNM, Borcard et   al. 2004) and 
wavelet analysis (Keitt and Urban 2005). Th e mathemat-
ics of geometry also has its own language of scale, based 
heavily on research on fractals beginning with Mandelbrot 
(Mandelbrot 1967). Fractal dimensions describe a sort of 
scale-dependence of measurements, in which the measured 
length of a complex curve (for example, a coastline) depends 
on the length (i.e. grain size) of the measuring stick. Self-
similarity describes a kind of scale-independence, in which 
one can continuously zoom in to a geometric object (such 
as the famous Koch snowfl ake, Sugihara and May 1990) 
without changing the perceived structure of the object. Both 
concepts have seen some adoption in ecology (Sugihara and 
May 1990, Harte et   al. 1999). 

 Scale-related terms from other fi elds have infi ltrated 
ecology through various subfi elds, yielding a somewhat 
larger-than-necessary, though still largely consistent vocab-
ulary. A noteworthy diff erence, however, is in the use of 
 ‘ scale-dependence ’ . Some reserve the term for cases where 
 ‘ the functioning of a system varies over scales to the point 
where scales of observation divorced by an order of mag-
nitude in resolution or extent can be treated as essentially 
independent ’  (Manson 2008, p. 779). Th is is a stronger ver-
sion of scale-dependence than is generally used by ecologists, 
who often simply wish to say that something changes across 
scales. An example of this kind of strong scale-dependence 
can be found in statistical mechanics, which scales from the 
microscopic behavior of particles to the macroscopic behav-
ior of large collections of particles (Gould and Tobochnik 
2010). Th e behavior of individual molecules is so far divorced 
from the aggregate properties of a volume of gas that they are 
described, not only by diff erent models, but by wholly dif-
ferent state variables (position and velocity versus pressure, 
temperature and volume in the case of the ideal gas law). 

Sandel and Corbin 2010). Scale-dependence of model struc-
ture occurs when the variables included in a model, or the 
functional forms used to describe their relationships, vary 
with grain size or extent. For example, limiting extent can 
lead to incorrectly modeling a quadratic relationship as 
linear (example 6 above).   

 Class 

 Data can be scale-dependent because the measured property 
truly varies with scale, or because observability of the prop-
erty depends on scale. I propose that the fi rst be called true 
scale-dependence of data, and the second perceived scale-
dependence. Measures of species richness across varying 
grains provides an example of both true and perceived classes. 
On one hand, species richness does show a true increase 
with grain size. On the other hand, at very large grain 
sizes (say, 10 km 2 ), it is not typically possible to observe all 
species, such that the degree to which a survey underes-
timates true richness is a function of grain size. Similar 
problems occur when assessing species occupancy, where 
methods exist to correct for errors of non-detection 
(MacKenzie et   al. 2002). 

 Similarly, models may be scale-dependent because of a 
fundamental change in the underlying relationship with 
scale (as has been proposed for the productivity – diversity 
relationship, for example [Chase and Leibold 2002]), or 
because imperfect models lead to confounding eff ects that 
appear as scale-dependence. Th us, the distinction between 
true and perceived classes can be applied to models as well. 
An example of perceived scale-dependence was shown 
in example 3 above, where the eff ect size of a relationship 
between a pair of species appeared to change with grain size, 
but this relationship refl ected a problem with the statistical 
model, not a feature of the biotic interaction itself. On the 
other hand, a species pair showing competition over short 
distances and facilitation over longer distances can show true 
scale-dependence (example 4, van de Koppel et   al. 2006). In 
the case of perceived scale-dependence, the disappearance of 
one species would have scale-invariant consequence for the 
population of the other, while in true scale-dependence, the 
consequences would be scale-dependent. 

 Unfortunately, in practice it is very diffi  cult to distin-
guish perceived and true scale-dependence. In general, it will 
require some external information, such as a manipulative 
experiment or knowledge about possibly important miss-
ing covariates. In purely correlative studies, however, the 
possibility of perceived scale-dependence raises an impor-
tant warning fl ag. Th e critical point is that scale-dependent 
behavior from a model might not tell us anything impor-
tant about the system being modeled, only that our model 
is imperfect.    

 Relationships to scale taxonomies in other 
fi elds 

 Having proposed a system for describing scale-dependence 
in ecology, I now take a step back to consider the vocabu-
lary of spatial scale and scale-dependence in other fi elds. 
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 Rather, we need to consider the entire surface of resource 
depletion generated by all individuals of species A. Th is sur-
face is a joint function of the patch size of resource depletion 
by an individual and the spatial distribution of individuals 
of species A. Some species are relatively uniformly dis-
tributed (tending to produce rather smooth resource use 
surfaces), while others are extremely patchy (tending to pro-
duce very heterogeneous resource use surfaces) (Seidler and 
Plotkin 2006). Th ese diff erent patterns have very diff erent 
consequences for the grain sizes and extents where biotic 
interactions will have most explanatory power (e.g. Fig. 5). 
For interactions to matter at large scales, it is not required 
that individuals interact over large scales, but only that the 
surface describing total interactions is variable over large 
scales, in the same way that the infl uence of any one rain-
drop is spatially restricted but the total eff ect of precipitation 
variation has large-scale ecological consequences. 

 Besides the  ‘ pairwise interactions are local ’  argument, 
others might have in mind something like the situation 
illustrated in example 3 (Fig. 5A). In this case, the over-
whelming eff ect of the environment in large plots swamped 
the eff ect of interaction between two species. Th us, the 
smaller a plot, the more accurate was the estimate of the 
biotic interaction. Th ere are two major problems with 
this generalization revealed by this simple example. First, 
the perceived scale-dependence was a result of our model 
being incomplete rather than a true scale-dependent eff ect 
of predators on prey. Completing the model by adding the 
environment led to unbiased, scale-independent estimates 
of the eff ect of predators on prey. Of course, in real applica-
tions, we typically have not measured all of the environ-
mental variables that matter, so this kind of correction will 
not usually be possible. Th at does not change the fact that a 
scale-dependent relationship between two species does not 
necessarily tell us anything about the nature of the interac-
tion between the two; it may simply indicate that there is 
an important environmental variable missing from the 
model. Second, the generalization that small plots give 
better estimates of biological interactions only holds when 
the spatial structure of the missing environmental variable is 
coarser than noise in the species distributions. 

 Th us, I argue that 1) generalizations about the scales at 
which biotic interactions matter have suff ered so far from a 
lack of specifi cation about what they should matter for and 
how, ambiguities that should be resolved by following a more 
formal approach to discussing scale-dependence, and 2) the 
theoretical basis for the claim is weak. Finally, in a recent 
review on the topic, Wisz et   al. (2013) provided numerous 
examples of cases where biotic interactions matter for the 
distribution of species at large extents and grain sizes. It is 
time to stop assuming that biotic interactions only matter 
at small scales.  

 Conclusion 

 Spatial scale-dependence is in fact a cluster of loosely related 
concepts, arising through a variety of eff ects. While it is a 
ubiquitous feature of many natural and social systems, it 
is not magic  –  some mechanism must be responsible for 

 Across the social and natural sciences, there seems to be 
an emerging consensus that analyzing patterns across mul-
tiple spatial scales may be the best solution to the MAUP 
(Marceau 1999). Th is viewpoint appears to be becoming 
widespread in ecology, with the recognition of the ubiquity 
of scale-dependence and an increasing number of studies 
focused on changes in patterns across spatial scales (Sandel 
and Smith 2009). Jelinski and Wu (1996) provide a perspec-
tive on the MAUP similar to that advocated here, that it is 
not strictly speaking a  ‘ problem ’ , but rather a real feature 
of systems with complex hierarchical structure, carrying 
 ‘ critical information needed to understand the structure, 
function and dynamics ’  of these systems (140).   

 Scale-dependence of biotic interactions 

 I am particularly interested in ecologist ’ s ideas about the 
scale at which biotic interactions matter. Th e claim that 
biotic interactions primarily matter at small scales has almost 
become axiomatic (Huston 1999, Pearson and Dawson 
2003, Willig et   al. 2003, McGill 2010). Th is generalization 
is at best incomplete. It could mean that 1) the explanatory 
power of biotic interactions decreases as extent increases, 
2) the perceived eff ect size of the interaction declines with 
increasing grain size because the relationship becomes 
swamped by unmeasured environmental covariates or 3) 
the true eff ect size declines towards zero as grain increases, 
among numerous other possible meanings. Th ese are very 
diff erent statements, and as the examples above show, can 
arise for diff erent reasons. Finally, we have not specifi ed what 
biotic interactions are supposed to matter for. Do we mean 
that biotic interactions matter little for the abundance of 
particular species, for the distribution of a species, for spe-
cies richness, or for net primary productivity? For example, 
California has been invaded by more than 1000 species of 
plants, and has lost only 14 native species (Seabloom et   al. 
2006). Th us, competition with invasive species has caused at 
most a rather modest reduction in native species richness at 
the grain size of the state. However, many native species have 
experienced marked population declines at the state level 
because of competition with invasive species (D ’ Antonio 
et   al. 2007). In this case, the eff ect of competition at large 
grain is clear for population sizes, but minor for species 
richness. 

 Somehow, the ecological culture has put the onus of 
proof on demonstrating that biotic interactions do matter 
at large scales, a task that is now being taken up (Wisz et   al. 
2013). How did we get there? Why is the common wisdom 
that they do not matter at large scales? One common argu-
ment is that interactions are pairwise things (between a wolf 
and an elk, for example), and that these pairwise things are 
inherently local. For example, McGill (2010) notes that  ‘ it 
is diffi  cult to imagine how the interaction between two birds 
can be infl uential at large scales ’  (p. 576). More specifi cally, 
if species A and B compete via resource depletion, an indi-
vidual of species A can only deplete resources within some 
patch, therefore having no eff ect on individuals of B that 
are further away. Of course that is true, but it is not what 
matters. 
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data or models changing across scales. To move ecology 
forward in the face of scale-dependence, identifying and 
focusing on these mechanisms is likely to be productive and 
promises to provide more fundamental understanding and 
improved generalizations about ecological systems. Th is can 
only be realized with clear communication and distinctions 
between fundamentally diff erent kinds of scale-dependence. 
Th e taxonomy proposed here provides such a way forward, 
by specifying the component, subject and class of scale-
dependence.                    
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