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Global soil carbon projections are improved by
modelling microbial processes
William R. Wieder1*, Gordon B. Bonan1 and Steven D. Allison2

Society relies on Earth system models (ESMs) to project future
climate and carbon (C) cycle feedbacks. However, the soil
C response to climate change is highly uncertain in these
models1,2 and they omit key biogeochemical mechanisms3–5.
Specifically, the traditional approach in ESMs lacks direct
microbial control over soil C dynamics6–8. Thus, we tested a
new model that explicitly represents microbial mechanisms of
soil C cycling on the global scale. Compared with traditional
models, the microbial model simulates soil C pools that more
closely match contemporary observations. It also projects
a much wider range of soil C responses to climate change
over the twenty-first century. Global soils accumulate C if
microbial growth efficiency declines with warming in the
microbial model. If growth efficiency adapts to warming, the
microbial model projects large soil C losses. By comparison,
traditional models project modest soil C losses with global
warming. Microbes also change the soil response to increased
C inputs, as might occur with CO2 or nutrient fertilization.
In the microbial model, microbes consume these additional
inputs; whereas in traditional models, additional inputs
lead to C storage. Our results indicate that ESMs should
simulate microbial physiology to more accurately project
climate change feedbacks.

Contemporary ESMs use traditional soil C models, which
implicitly simulate microbial decomposition through first-order
kinetics that determine turnover rates of soil C pools1,2. Although
such models can replicate extant soil C pools on various scales9,10,
their ability to project soil C response in a changing environment
remains unresolved11,12. In the past 30 years, researchers have
identified key processes and feedbacks that could be important
for accurately simulating future C-cycle–climate feedbacks. For
example, traditional models neglect microbial physiological pro-
cesses that transform and stabilize soil C inputs3–5. In contrast,
recent microbial models explicitly simulate microbial biomass
pools that catalyse soil C mineralization6,8 and produce notably
different results in transient simulations6. By representingmicrobial
physiological responses, such models may provide a better fit to
observations, especially in a changing environment13,14. Yet so far,
no modelling studies have tested the relevance of microbial mecha-
nisms for soil C responses to climate change on the global scale.

We created a new soil biogeochemistry module for use in
the Community Land Model that explicitly simulates microbial
biomass pools (CLMmicrobial model; Fig. 1; modified from ref. 6).
The CLM microbial model represents above-ground and below-
ground processes and separates below-ground pools into surface
(0–30 cm) and subsurface (30–100 cm) horizons. Microbes in this
model directly catalyse the mineralization of litter and soil C
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Figure 1 | Diagram of the CLM microbial model. The model explicitly
simulates microbial driven soil C cycling in above-ground, surface
(0–30 cm) and subsurface (30–100 cm) soil horizons. Ovals represent
pools for litter (Lit), microbial biomass (Mic) and SOC. Fluxes between
pools are shown with arrows. Plant inputs enter leaf and root litter pools
(solid black arrows). A small fraction of litter flux (Fi) enters SOC pools
without passing through microbial biomass (dashed black arrows).
Otherwise, litter and SOC pools pass through microbial biomass, with rates
determined by the size of the microbial biomass pool and temperature-
sensitive Michaelis–Menten kinetic parameters (red arrows), based on
observations15 (Supplementary Table S1). Microbial respiration is also
assumed to be temperature sensitive and proportional to 1–MGE (bold
black arrows). At present, MGE declines linearly with soil temperature, but
parameters for this relationship are not well constrained by observations
(see also ref. 15). Microbial turnover (that is, mortality, τ ) converts
microbial biomass to SOC pools (blue arrows). In the present parameter-
ization, τ =0.0005 h−1 and Fi=0.02 h−1 (Supplementary Table S1).

pools according to Michaelis–Menten kinetics. In this formulation,
decomposition losses can be limited by both substrate availability
(the organic C pools) and microbial biomass, which is assumed
to be the source of enzymatic activity. This structure differs from
traditional models in which decomposition losses depend only on
first-order decay of substrate (soil C) pools6.

Temperature affects three key microbial parameters in our
model. The Michaelis–Menten relationship requires two param-
eters: Km, the substrate half-saturation constant and Vmax, the
maximal reaction velocity (Fig. 1). We used observational data
to constrain these parameters and their temperature sensitivities,
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Figure 2 | Global distribution of soil C pools (0–100 cm) from observations19 and models. a, Observations, global total= 1,259 Pg C. b, CLM4cn, global
total=691 Pg C (spatial correlation with observations (r)=0.55, model-weighted root mean square error (r.m.s.e)= 7.1 kg C m−2). c, DAYCENT, global
total=939 Pg C (r=0.53, r.m.s.e= 7.6). d, The CLM microbial model, global total= 1,310 Pg C (r=0.71, r.m.s.e= 5.3).

which generally follow an exponential form15. The third key
parameter is microbial growth efficiency (MGE), which determines
how much microbial biomass is produced per unit of substrate
consumed16. MGE probably declines with increasing temperature,
although the magnitude of the response is uncertain17. Con-
sequently, C decomposition depends on temperature, substrate
availability and the size of themicrobial biomass pool.

After running to steady state, we compared soil C pools from the
CLMmicrobialmodelwith soil C pools from two traditionalmodels
(illustrated with model parameterizations from the Community
LandModel version 4with active carbon–nitrogen biogeochemistry
(CLM4cn; ref. 18) and the Daily Century Model (DAYCENT;
ref. 10)).We also comparedmodel outputs to observations from the
globally gridded Harmonized World Soils Database19. Global sim-
ulations were forced with observationally derived litter inputs (see
Methods) andwith soil temperature andmoisture froma twentieth-
century simulation18. Overall, the CLMmicrobial model explained
50% of the spatial variation in the soil C observations, whereas the
traditional models explained 28–30% of the variation and showed
greater average deviations from soil C observations (Fig. 2).

Other traditional models perform even worse than the two
reported here. For example, a previous version of CLM4cn, using
modelled litter inputs, explained only ∼2% of the spatial variation
in observed soil C stocks at the 1◦ grid scale, and no other ESM
explained more than 16% of the variation2. Some of this poor
performance may be owing to ESM errors in simulating litter
inputs. We avoided these errors by using litterfall observations
for our present analysis. Still, the CLM microbial model explained
20% more soil C variation than traditional CLM4cn with observed
litterfall, an improvement rivalling the entire explanatory power of
previous models. Moreover, the CLM microbial model accurately
simulates observed soil C pools in both surface soil layers (0–30 cm)
and total soil profiles (0–100 cm; r = 0.75 and 0.71, respectively;
Supplementary Fig. S1).

A closer examination of regional patterns illustrates specific gaps
in our representation of processes driving soil C cycling (Fig. 2).
Some regions, especially in the tropics, have low projected soil
C densities compared with soil C observations. These low biases
suggest systematic problems with modelling the physiochemical
soil environment. Specifically, the CLM microbial model does
not simulate the physical protection of soil C or pH effects on

soil microbial activity. These mechanisms should be a focus for
futuremodel development, especially in tropical soils. Additionally,
simulating processes that build and maintain organic soils remains
a challenge in ESMs (ref. 20). In the Arctic, the CLM microbial
model generates higher soil C densities than traditional modelling
approaches (Fig. 2). However, there are poor spatial correlations
between our modelled soil C pools and observational data sets
(Supplementary Fig. S2). Also, all of the Arctic data sets show
a high degree of spatial heterogeneity in soil C, a feature clearly
absent from our model simulations (Supplementary Fig. S2).
Improved hydrologic and moisture controls over soil C turnover
will probably be needed to simulate this heterogeneity in the
Arctic. Aswell asmodel improvements,measurement efforts should
address the wide discrepancies in empirical estimates of Arctic soil
C (Supplementary Fig. S2).

Accurate simulation of present soil C stocks is essential, but the
main goal of ESMs is to project C–climate feedbacks in the future.
When the environment changes, the CLM microbial model makes
projections that differ from traditional soil biogeochemistrymodels
(Fig. 3). For example, perturbations such as increased CO2 or N
deposition may increase plant productivity and C inputs to soils.
In the CLMmicrobial model, increasing global litter inputs by 20%
results in an ephemeral accumulation of soil C, which concurrently
increases microbial biomass. Larger microbial biomass pools then
accelerate rates of soil C turnover and increase rates of heterotrophic
respiration. The net effect is no change in soil C pools after 30
years. In contrast, increasing litterfall inputs to traditional models
causes soil C accumulation. The difference is owing to the joint
dependence of soil C loss on substrate pool size and microbial
biomass in the microbial model (Fig. 3a).

On balance, projections from the CLM microbial model
show better agreement with observations from leaf litter
manipulations21,22 and CO2 enrichment studies23. Increasing litter
inputs generally increases rates of soil respiration, but elicits no
change in soil C storage (but see ref. 24). Although the mechanisms
underlying these observations are not well understood, several
studies emphasize the importance of the priming effect. Priming
occurs when increased inputs of fresh organic substrates accelerate
microbial decomposition of existing soil C (ref. 25). Typically,
priming is driven by increasedmicrobial demand for nutrients from
soil organic matter, or increased microbial growth and enzyme
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Figure 3 | Divergent model responses of global soil C pools in global
change simulations. a, Response of steady-state soil C pools for
conventional soil biogeochemistry models (CLM4cn, black; DAYCENT,
blue) and the CLM microbial model (green) to a 20% global increase in
litterfall beginning in year five. b, Response to a 4.8 C increase in mean
global temperature by 2100, projected by ensemble member one of CESM
simulations for RCP 8.5 used in CMIP5 experiments from 2006 to 2100.
For the microbial model, either MGE changes with temperature (solid green
line) or microbial communities adapt to increasing temperatures without
changing MGE (dashed green line).

production in response to substrate addition. Only the latter
mechanismoperated in our simulations because theCLMmicrobial
model does not include C–N interactions.

We used both microbial and traditional models to simulate
soil C responses to global warming (Fig. 3b). In the microbial
model, increased temperatures accelerate enzyme kinetics, which
generally leads to soil C loss. However, this effect can be completely
offset if MGE declines with warming and reduces the microbial
biomass that controls decomposition. If MGE does not change
with warming, then enzyme kinetics dominate and soils lose up to
300 PgC. Consequently, global soil C losses over the twenty-first
century could be negligible, or massive, depending on the thermal
response of MGE. Empirical studies suggest that MGE declines
with increasing temperature, at least in the short term16,17. Still, the

MGE response to temperature is poorly constrained and adaptive
processes in microbial communities could stabilize MGE in a
warming world. In traditional models, MGE is a fixed constant.
Accordingly, warming temperatures affect only kinetic constants in
traditional models, which project modest and similar soil C losses
in the warming scenario (Fig. 3b). Thus, traditional ESMs miss an
important element of global climate sensitivity driven by microbial
control over soil C cycling.

Despite better agreement with soil C observations, nearly 50%
of the spatial variation in global soil C pools remains to be
explained. Our work is just the first step towards a new generation
of models that include key biological and physical mechanisms
in the soil C cycle. For example, shifts in microbial community
structure could alter the temperature sensitivity of heterotrophic
respiration26, such that soils respire less CO2 than expected for a
given amount of warming. Enzyme Km and enzyme Vmax could
also adapt to climate warming, such that enzyme catalytic rates
increase more than expected at warmer temperatures14,15. Some
of these parameters may also shift with changes in N availability,
possibly as a result of shifts in microbial community structure27.
Accounting for these mechanisms not only holds promise for
improved simulation of present soil C distributions, but should also
increase confidence in the projection of soil C responses to future
climate change. However, themagnitude ofmicrobial adaptation to
climate change remains controversial28 and more empirical studies
are needed to determine the mechanisms underlying adaptation,
including physiological acclimation, microbial community shifts
and evolutionary processes. Nonetheless our analysis suggests that
soil C projections from present ESMs will remain questionable
until they can account for critical microbial mechanisms that
affect soil C dynamics.

Another key shortcoming in the CLM microbial model is the
lack of soil mineral interactions. In particular, there is no physio-
chemical protection of soil organic matter on mineral surfaces or
within aggregates, yet physical protection is known to affect soil
C storage4,7,29. This omission is also relevant because minerals and
aggregates are involved in soil C responses to perturbations3,7,29.
For example, soil mineralogy may influence the stabilization of
microbial byproducts and the temperature sensitivity of organic
matter sorption and desorption. These mechanisms should be high
priorities for future model development.

Our results have broad implications because society relies on
ESMs to project future atmospheric CO2 levels and climate. Our
model comparison shows that traditional ESMs omit key microbial
mechanisms that determine soil C responses to global climate
change. Clearly additional mechanisms should be included, but
our model is a crucial first step toward a new generation of global
models that integrate microbial physiology. Soil biogeochemistry
models in ESMs deserve further investigation, development and
more rigorous benchmarking with data, but we contend that an
explicitly microbial approach, such as the one presented here, has
several advantages. Simple microbial models should help bring
ESMs into better alignment with our theoretical understanding of
processes controlling turnover and stabilization of soil C, without
adding undue computational expense. Additionally, key parameters
in the CLMmicrobial model can bemeasured, a feature that should
facilitate future model development, evaluation and validation.
Finally, this approach represents biologicalmechanisms responsible
for C turnover in soils and will probably generate more accurate
projections of soil C feedbacks on climate change.

Methods
Equilibrium soil C pools were calculated for CLM4cn and DAYCENT models
using an analytical solution30 with globally gridded input data sets for mean annual
soil moisture and temperature18, soil texture and pH (ref. 19), litter chemistry31
and litterfall inputs derived from observations32 (described in ref. 33). We forced
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the model with these litterfall data to reduce error and biases associated with ESM
projections of net primary productivity, plant C allocation and associated litter
fluxes. This modification substantially improves soil C estimates in conventional
soil biogeochemistry models33. Additionally, DAYCENT parameterizations were
modified to simulate deeper soil horizons and minimize error between modelled
and observed soil C pools33. In its present configuration, the CLM microbial
model has no structure allowing for the decomposition of coarse woody debris.
Accordingly, coarse woody debris inputs were omitted from the litterfall inputs
used to force all three models evaluated here. For conventional models, soil C pools
reported here are the sums of all pools (Fig. 2b,c).

Using the same soil temperature and litterfall inputs, we calculated equilibrium
soil C pools for the CLM microbial model using a traditional spin-up (∼1,500 yr
run at hourly time steps). For vertically resolved soils in the CLM microbial
model, we allocated 65% of root litter inputs to surface soils (0–30 cm) and
the remaining 35% to subsurface horizons (30–100 cm). Soil C pools reported
for the CLM microbial model represent the sum of soil organic C (SOC) and
microbial biomass, although at equilibrium, microbial biomass pools are only
∼1% of total soil C pools. We compared modelled soil C pools with observations
from the Harmonized World Soils Database19 using sample cross-correlation and
area-weighted r.m.s.e.

We assumed Michaelis–Menten kinetics parameters (Vmax and Km) and MGE
were temperature sensitive, using parameter values reported in refs 6,15. Median
values used to calculate the relationship between temperature and enzyme kinetics
produced plausible global soil C pools (Supplementary Fig. S3), although high
RMSE, large litter pools and large soil C pools suggested that C turnover was
too slow, especially at high latitudes. Therefore we used the upper and lower
bounds for the temperature sensitivity of Vmax and Km, respectively, in the CLM
microbial model to simulate equilibrium soil C pools that minimized RMSE with
observations (Fig. 2d and Supplementary Fig. S1).

To examine model behaviours in response to future global change, we took
steady-state soil C estimates generated for each model and perturbed litter inputs
or soil temperature. In both perturbation experiments, control simulations were
forced with observationally derived litter inputs evenly distributed throughout the
year and mean monthly soil temperature and soil moisture data from 1985 to 2005
from a single community ESM (CESM) ensemble member from archived Coupled
Model Intercomparison Project Phase 5 (CMIP5) experiments (publically available
online at http://www.earthsystemgrid.org). In year five of the litter manipulation
experiment, we increased global litter fluxes 20% for 30 years, calculating the differ-
ence in global soil C pools between control and increased litter simulations (Fig. 3a).
Using CESM soil temperature projections from an archived CMIP5 experiment for
the Representative Concentration Pathway 8.5 (RCP 8.5) from 2006 to 2100, we cal-
culated the change in soil C pools projected by 4.8 ◦Cwarming by the end of this cen-
tury for each model (Fig. 3b). The CLMmicrobial model has temperature-sensitive
MGE. We explored the implications of assumptions made about changes in MGE
with increasing soil temperatures, allowing: instantaneous decreases in MGE with
warming soil temperatures (Fig. 3b, solid green line); or instantaneous adaptation of
microbial community MGE, so that MGE does not decrease with warming (dashed
green line). Data presented in Fig. 3b are a subset of results from these warming
experiments showing the range of possible outcomes with different parameters and
initial soil C pools.More information is available in Supplementary Fig. S4.
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