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Abstract. Uncertainty is pervasive in ecology where the difficulties of dealing with
sources of uncertainty are exacerbated by variation in the system itself. Attempts at clas-
sifying uncertainty in ecology have, for the most part, focused exclusively on epistemic
uncertainty. In this paper we classify uncertainty into two main categories: epistemic un-
certainty (uncertainty in determinate facts) and linguistic uncertainty (uncertainty in lan-
guage). We provide a classification of sources of uncertainty under the two main categories
and demonstrate how each impacts on applications in ecology and conservation biology.
In particular, we demonstrate the importance of recognizing the effect of linguistic uncer-
tainty, in addition to epistemic uncertainty, in ecological applications. The significance to
ecology and conservation biology of developing a clear understanding of the various types
of uncertainty, how they arise and how they might best be dealt with is highlighted. Finally,
we discuss the various general strategies for dealing with each type of uncertainty and offer
suggestions for treating compounding uncertainty from a range of sources.
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INTRODUCTION

Uncertainty pervades all our attempts to ascertain
the truth about the natural and physical environment.
It comes in two main flavors: epistemic and linguistic.
Epistemic uncertainty is uncertainty associated with
knowledge of the state of a system and it includes
uncertainty due to limitations of measurement devices,
insufficient data, extrapolations and interpolations, and
variability over time or space. Linguistic uncertainty,
on the other hand, arises because much of our natural
language, including a great deal of our scientific vo-
cabulary, is underspecific, ambiguous, vague, context
dependent, or exhibits theoretical indeterminacies. To
see how linguistic uncertainty may impact on ecology,
consider estimating the number of endangered species
in a region. Even if all species in the region are known,
this estimate may be uncertain because some species
are apparently neither endangered nor not endangered
and it is not clear whether to count such species or not.
In cases such as these, the uncertainty arises because,
it is argued, there is no fact of the matter about what
constitutes an endangered species. This differs from
cases in which there is a fact of the matter but we do
not know what it is. Before we can even attempt to
count the number of endangered species, it is necessary
to decide what we mean by the term ‘‘endangered spe-
cies.’’
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There have been a few attempts at the general prob-
lem of classifying different types of uncertainty in-
cluding Kahneman and Tversky (1982), Sorensen
(1989), Morgan and Henrion (1990), Kwan et al.
(1997), and Smets (1998a, b). Some have confused the
sources of epistemic and linguistic uncertainty by as-
signing categories that are too broad, or they have in-
troduced redundant categories. In ecology, Chesson
(1978) suggested a scheme that included only epistemic
sources of uncertainty. Shaffer (1981, 1987) likewise
considered only epistemic uncertainty when he clas-
sified phenotypic variation, demographic variation, en-
vironmental variation, and catastrophes. His taxonomy
(or close relatives like that of Hilborn [1987]) has come
to dominate thinking in applied ecology and conser-
vation biology (Boyce 1992, Burgman et al. 1993).
Other taxonomies have been suggested, motivated by
contexts such as model-building for ecological risk as-
sessment (Ferson and Ginzburg 1996) and management
imperatives (Shrader-Frechette 1996).

Specific aspects of the effects of the sources of ep-
istemic uncertainty have attracted attention in ecology
mainly for their impacts on decision-making (Taylor
1995, McCarthy et al. 1996, Pascual et al. 1997). In
some cases, consideration of even a subset of the full
spectrum of uncertainty has been considered to be de-
bilitating (Beissinger and Westphal 1998). But there
has been no comprehensive evaluation of the impor-
tance of the full spectrum of uncertainties on decision-
making processes. Although linguistic uncertainty is
common in conservation biology where policy and de-
cision-making play important roles, it is often ignored
and only epistemic uncertainty is considered. A clear
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understanding of the multifaceted nature of uncertainty
will facilitate the implementation of appropriate meth-
ods for the treatment of uncertainty in ecology and
conservation biology.

EPISTEMIC UNCERTAINTY

Epistemic uncertainty can be classified into six main
types: measurement error; systematic error; natural var-
iation; inherent randomness; model uncertainty; and
subjective judgment. Each arises in different ways.
Since most of these types of uncertainty are well known
to working scientists, we treat them only briefly here.

Measurement error

Measurement error results from imperfections in
measuring equipment and observational techniques and
includes operator error and instrument error. Uncer-
tainty due to measurement error manifests itself as (ap-
parently) random variation in the measurement of a
quantity. (It is not truly random—more on this later.)
Repeated measurements will vary statistically about a
mean. In the absence of all other uncertainty, the re-
lationship between the true quantity and the measured
quantity is dependent upon the number of measure-
ments taken, the variation among measurements, the
accuracy of the equipment used to take the measure-
ment, and the training and skill of the observer. For
example, Taylor and Wade (2000) note that blue whales
are conspicuous because of their physical size and the
size of their blows. Beaked whales are smaller, surface
quickly and erratically, and have no conspicuous blow.
They estimate ranges for population sizes from typical
surveys to be 600–1600 whales for the former, and
200–3000 whales for the latter, given equal underlying
population sizes.

This type of uncertainty is dealt with by applying
statistical techniques to multiple measurements or by
reporting the measurement with bounds (via confidence
intervals or physical constraints of the equipment
used).

Systematic error

Systematic error occurs as the result of bias in the
measuring equipment or the sampling procedure. It is
formally defined as the difference between the true val-
ue of the quantity of interest and the value to which
the mean of the measurements converges as sample
sizes increase. Unlike measurement error, it is not (ap-
parently) random and, therefore, measurements subject
to systematic error alone do not vary about a true value.
Systematic error can result from the deliberate judg-
ment of a scientist to exclude (or include) data that
ought not be excluded (or included), or it can result
from unintentional error such as the erroneous calibra-
tion of measuring equipment or consistent incorrect
recording of measurements. For example, estimates of
population sizes based on line transects are sometimes
biased because they assume that all animals in the path

of the observer (or the ship or plane) are seen. This
assumption is false for species that are cryptic, or dive,
or otherwise might go unnoticed even in the direct path
of a survey (Taylor and Wade 2000). Population sizes
will be underestimated unless the violations of this as-
sumption are corrected.

Systematic error can also be introduced due to ref-
erence class problems. When deriving statistical results
using relative frequencies, choosing the appropriate
reference class is crucial. There has been a great deal
of recent debate about this issue in the foundations of
statistics literature (Hájek 2002, and many papers in
Kyburg and Thalos 2002). This issue also has serious
consequences in all areas where statistics are used (see,
for example, Colyvan et al. 2001). Although there is
no known general solution to the reference-class prob-
lem, the fact remains that statistics derived by using
an inappropriate reference class will seriously bias re-
sults. Reference-class problems arise in ecology and
conservation biology whenever there are issues of
scale. For instance, Hamer and Hill (2000) found that
estimates of species richness of butterflies in modified
habitat depend on the scale at which surveys are con-
ducted. In other words, the extent of the effects of
habitat disturbance depends on the reference class on
which the results are based, in this case small or large
scales (see also May 1994 on issues of scale).

Some examples of systematic error arise because of
the theory ladeness of observation. This alludes to cer-
tain biases that exist because observations are tainted,
to some extent, by our theories (Chalmers 1999); we
observe, in effect, what our theory instructs us to ob-
serve. For example, opportunistic records of species
often contribute to estimates of species ranges and con-
servation status (IUCN 1994). But species are the prod-
uct of scientific interpretation by taxonomists whose
species concepts differ, and who have access to dif-
ferent sets of information. Frequently, taxonomic re-
visions result in the elevation of races or subspecies to
the status of a species, and those species may be as-
sessed to be threatened. Such species sometimes appear
to increase their ranges through time because the re-
vision and change in conservation status increases in-
terest in the species. This leads in turn to an increase
in recorded sightings and creates an illusion of a dis-
tributional change that is driven by observational bias.
This source of error contributed to biased statistical
results for estimates of extinction likelihoods for Aca-
cia species in Western Australia that were discounted
by independent data (Burgman et al. 2000).

The only way to deal with systematic error is to
recognize a bias in the experimental procedure and re-
move it. Systematic error, however, is notoriously dif-
ficult to recognize, except on theoretical grounds. Cor-
rections may only be applied when the magnitude and
direction of the bias are known. Such corrections un-
derlie the application of double-sampling methods in
environmental science (Gilbert 1987, Philip 1994). Dil-
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igent inspection of the experimental procedure, com-
parison of estimates with scientific theory and inde-
pendent studies, and careful attention to detail may be
the only tools we have to identify and correct inci-
dences of systematic error in measurements.

Natural variation

Natural variation occurs in systems that change (with
respect to time, space, or other variables) in ways that
are difficult to predict. Some taxonomies of uncertainty
distinguish between the temporal and spatial compo-
nents of natural variation (e.g., Chesson 1978). An im-
portant application of this concept in ecology is the
observation that populations are subject to natural var-
iation because individuals die while others are recruited
into the population, at rates that may depend on factors
such as food availability, weather conditions, fluctua-
tions in predators, disease spread and so on. Natural
variation is not a source of epistemic uncertainty per
se; it is just that the true value of the parameter in
question changes as a result of changes in independent
variables. It is often regarded as a source of uncertainty
because the true value of the quantity of interest is
usually extraordinarily difficult to measure or predict
across the full range of temporal and spatial values (or
other related variables). A variety of well-known sta-
tistical methods are available for the treatment of this
kind of uncertainty (Sokal and Rohlf 1981).

Inherent randomness

Inherent randomness in a system occurs not because
of our limited understanding of the driving processes
and patterns, but because the system is, in principle,
irreducible to a deterministic one (the most well-known
case is described by Heisenberg’s uncertainty principle
in quantum mechanics, Hughes 1989). Although many
systems are said to be inherently random, genuine ex-
amples of this kind of uncertainty are hard to find. Even
classic cases of random experiments like coin tosses
and the throwing of dice are deterministic; it is just
that we do not have enough information about the dy-
namic processes and initial conditions to make any sen-
sible estimates about the outcomes. Such processes are
for all intents and purposes inherently random, but they
are not genuinely inherently random. For similar rea-
sons complex systems such as ecosystems and weather
patterns are very unlikely to be inherently random.
Similarly, chaotic systems are entirely deterministic.
They are unpredictable because the deterministic pro-
cesses generating them and the relevant initial condi-
tions are hard to fully specify (see Stewart 1989, Su-
gihara et al. 1990). Even though it is extremely unlikely
that any biological system is inherently random, this
type of uncertainty is mentioned here to distinguish
between processes that appear random because of in-
complete information and those that are inherently ran-
dom. We believe the former, rather than the latter, ap-
plies in ecology and conservation biology.

Model uncertainty

Model uncertainty occurs as a result of our repre-
sentations of physical and biological systems. Models
may be based on diagrams, flow charts, mathematical
representations, computer simulations, and many oth-
ers. Here, we focus on mathematical and computer
models since they are used extensively in applications
such as wildlife and natural resource management for
predicting future events or for answering questions
about a system under specified scenarios (e.g., Pos-
singham et al. 1993, Punt and Smith 1999). The others
are more important as conceptual tools, to assist in the
understanding of the structure of the system in ques-
tion.

Model uncertainty arises in two main ways. First,
usually only variables and processes that are regarded
as relevant and prominent for the purpose at hand are
featured in the model. Texts in ecology that describe
model building advise that models should be a com-
promise between the level of understanding of the sys-
tem, and the kinds of questions it is necessary to answer
(e.g., Levins 1966, Burgman et al. 1993). For instance,
unstructured, deterministic Malthusian growth models
that predict the abundance of populations do not ex-
plicitly include parameters that describe rainfall or oth-
er weather events because it is thought that although
weather patterns may have some indirect effect on re-
production and mortality of the species, they are not
sufficiently important in understanding or evaluating
the problems at hand that they warrant being explicitly
incorporated in the model (Eberhardt 1987).

The second way model uncertainty arises is in the
way constructs are used to represent observed pro-
cesses. The use of the first-order derivative to describe
how populations change in time (such as in the logistic
growth equation) is a mathematical construct based on
an underlying theory about growth rates. Nevertheless,
it is still a representation of a natural process; individ-
uals die, others reproduce, they eat available food, en-
counter predators, sleep, and so forth. None of these
activities are mathematical in nature and yet they do
have an impact on the population abundance, and may
be represented in a variety of mathematical forms. An-
other abstraction is employed when continuous equa-
tions are used to describe discrete processes. These are
examples of different views of the correct interpretation
of observations and theories. Ginzburg (1986) pre-
sented two different ways of interpreting rate-based
equations, one in terms of first-order derivatives of pop-
ulation size with respect to time, and the other in terms
of second-order derivatives. Which is appropriate de-
pends on whether one views the growth rate or the
change in growth rate as driving the population dy-
namics. Such interpretation and representation of phys-
ical systems always leads to model uncertainty. We also
note that the uncertainty arising from curve fitting (in-
cluding interpolation and extrapolation) is a kind of
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model uncertainty; the aim is to provide a mathematical
expression to describe how variables are related given
empirical data points.

Model uncertainty is notoriously difficult to quantify
and impossible to eliminate. Morgan and Henrion
(1990) offer some solutions for providing the ‘‘best’’
available model for particular purposes and scenarios.
However, this does not reduce the uncertainty of any
particular model. The only reliable way of determining
how appropriate a model is for prediction is to perform
validation studies. Of course, these are often unfeasi-
ble. But when it is feasible to validate aspects of a
model, this can be a useful way to determine if it gives
the right sorts of outcomes within an acceptable margin
of error (see Brook et al. [2000] for one such validation
study).

The uncertainty that arises from approximation of
established models also fits into the category of model
uncertainty. For instance, when a system of continuous
differential equations is adopted to represent compli-
cated population dynamics, it is often necessary to em-
ploy a numerical algorithm to solve the equations for
the quantity of interest. In such cases, a model, or rather
a meta-model, is constructed to represent the original
model. The uncertainty associated with the meta-model
can be viewed as higher order model uncertainty. In
some treatments, this type of uncertainty is categorized
as uncertainty due to approximation. Approximation of
this kind fits quite naturally into the category of model
uncertainty; the meta-model is a representation of the
original model, constructed in order to make predic-
tions and answer questions about the original model.
Treatments of uncertainty in these kinds of meta-mod-
els have been well-studied in numerical analysis (see
Iserles [1996] and references therein). Many expres-
sions exist for calculating the order of the error asso-
ciated with particular strategies for numerically solving
continuous systems of equations. In this way, higher
order model uncertainty is better understood and easier
to quantify than its first-order counterpart.

Subjective judgment

Uncertainty due to subjective judgment occurs as a
result of interpretation of data. This is especially the
case when data are scarce and error prone. There is a
vast body of work on scientific reasoning and the phil-
osophical background of the formation of judgments
based on empirical data (see, for example, Horwich
1982, Skyrms 1986, Kyburg and Smokler 1964, and
Reichenbach 1949). Our aim here is not to summarize
the various points of view, but rather to acknowledge
that an element of subjective judgment exists in esti-
mates of parameters in the biological sciences, and to
highlight the ways it can be dealt with.

Often, there is insufficient empirical data to make
reliable statements about parameter values. In such cas-
es, when there is an imperative to proceed with some
course of action, the judgment of an expert is used in

place of empirical data. Of course, the expert’s judg-
ment will be based on observations and experience,
both of which constitute empirical data. In all such
assessments there is an element of uncertainty.

The standard way of dealing with this type of un-
certainty is to assign a degree of belief about an event
in the form of a subjective probability. For instance,
an expert might assign a probability of 0.7 to the event
‘‘population size of the species is .500 individuals.’’
Note that such an assignment might be based on fre-
quency data; one would expect that an expert’s judg-
ment would coincide with the results of data if they
were available for incorporation into the expert’s belief
system (Kyburg 1974, Lewis 1986). Degrees of belief,
however, are rarely precise. It seems much more rea-
sonable to assign a range of values to represent an
expert’s degree of belief. Imprecise probabilities can
be assigned in the form of interval probabilities, where
lower and upper bounds are assigned on the range of
beliefs about a particular event. This treatment of un-
certainty due to subjective judgment is well known in
the literature and includes the imprecise probabilities
of Walley (1991) and Dempster-Shafer belief functions
(Shafer 1976) and other non-Kolmogorov belief func-
tions such as in Field (2000).

There is a great deal of controversy over the correct
interpretation of the probability calculus. In particular,
there is an often heated debate between Bayesians, who
countenance a subjective interpretation (or degrees of
belief) and frequentists, who see probabilities as rel-
ative frequencies of one form or another. We do not
wish to enter into the debate in any significant way.
But since we have raised the issue of a subjective in-
terpretation of probability, we ought to at least rehearse
a few of the features of subjective probabilities that are
of interest here. The first, we have alluded to already:
subjective probabilities can be updated (via Bayes’ the-
orem) when new data comes to hand (where the latter
includes frequency data). Second, there are some well-
known convergence theorems in Bayesian statistics that
tell us that, in most cases of interest, repeated appli-
cation of Bayes’ theorem results in the subjective prob-
abilities converging on the objective chance. (See How-
son [1998] for a survey.) The third point is that there
are objective ways to arrive at our subjective proba-
bilities. Ramsey (1964) and DeFinetti (1964) showed
how to use betting behavior to do this. (See Carnap
[1945], Earman [1992], Hájek [1997] and von Mises
[1957] for more on the correct interpretation of the
probability calculus; see Anderson [1998], Carpenter
et al. [1999], Janssen and Carpenter [1999] and Wade
[2000] for application of Bayesian methods to conser-
vation biology.)

LINGUISTIC UNCERTAINTY

Linguistic uncertainty can be classified into five dis-
tinct types: vagueness, context dependence, ambiguity,
indeterminacy of theoretical terms, and underspecif-
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icity. All of these uncertainties arise in natural and
scientific language, and can impact on biological ap-
plications. Of these, vagueness is the most important
for practical purposes.

Vagueness

Vagueness arises because our natural language, in-
cluding much of our scientific vocabulary, permits bor-
derline cases. To reiterate the example given in the
introduction, the term ‘‘endangered’’ is vague because
some species are neither endangered nor not endan-
gered; there are borderline cases. It is generally thought
that there is no fact of the matter about whether some
borderline case is threatened or not (although, see Wil-
liamson [1994] for disagreement on this). This is be-
cause there are no facts about our language that de-
termine the extension of the term ‘‘endangered.’’ (We
should mention that some authors use the term ‘‘fuzz-
iness’’ to describe what we are calling ‘‘vagueness.’’
We follow Sorensen [1989], Williamson [1994], Read
[1995], and others and use the term ‘‘vagueness’’ be-
cause, unlike ‘‘fuzziness,’’ it does not prejudice the
question of what is the best method for dealing with
the phenomenon in question.)

Vagueness leads to many problems ranging from out-
right paradox, the so-called Sorites Paradox (Sainsbury
1995), to a particularly resilient kind of uncertainty that
can lead to serious problems in management decisions
about assigning resources (Regan et al. 2000). For ex-
ample, the vagueness of the word ‘‘endangered’’ en-
sures that there is no straightforward answer to the
question of how many endangered species there are.
To be sure, there is no shortage of definitions in the
literature for terms such as ‘‘endangered’’ (e.g., Millsap
et al. 1990, Master 1991, IUCN 1994, Lunney et al.
1996, Nicholopoulos 1999), but the fact remains that
terms such as these are vague, and attempts at providing
definitions (precise or otherwise) amount to replacing
the natural-language word with a technical term. Take,
for example, the IUCN treatment of the phrase ‘‘crit-
ically endangered.’’ Here the IUCN attempts to replace
the intuitive meaning with a sharply defined one, the
latter given by the relevant IUCN criteria. The strategy
is one of eliminating vague terms in favor of sharp
ones. So by criterion D (IUCN 1994), for example,
critically endangered is redefined to mean ‘‘,50 mature
individuals.’’

There are many problems with this approach (Wil-
liamson 1994). First, a taxon with 50 individuals is
classified very differently to a taxon with 49 individ-
uals. This is at odds with the meaning of the original
term ‘‘critically endangered’’ in which a taxon would
not receive a different classification on the basis of a
difference of one individual. Perhaps the most signif-
icant problem with this elimination strategy, though, is
that it is extremely difficult, if not impossible, to im-
plement. Vagueness permeates far too much of our lan-
guage to hold any serious hope for its elimination. By

way of illustration, consider the U.S. Federal Register’s
(Vol. 65, Number 218, §219.36) definition of ‘‘species
viability’’ as:

A species consisting of self sustaining and interact-
ing populations that are well distributed through the
species’ range. Self-sustaining populations are those
that are sufficiently abundant and have sufficient di-
versity to display the array of life history strategies
and forms to provide for their long-term persistence
and adaptability over time.

The number of vague terms employed in the defi-
nition gives us some insight into how widespread
vagueness is in scientific language and how difficult it
would be to eliminate (note, however, that some terms
in the definition above may also be subject to the ad-
ditional sources of linguistic uncertainty described be-
low).

Fortunately, there are other, better ways to deal with
uncertainty associated with vagueness than attempting
to eliminate it. These include supervaluations (Fine
1975), fuzzy logic and fuzzy set theory (Zadeh 1965,
Zimmerman 1996), intuitionistic logic (Putnam 1983),
three-valued logic (Körner 1955), paraconsistent logic
(Hyde 1997), modal logic (Williamson 1994:270–275),
and rough sets (Pawlak 1991, Read 1995). Of these, it
is fair to say, that the supervaluational approach is the
front runner in philosophical and logical circles, while
fuzzy approaches have the edge in computing and en-
gineering circles. The fuzzy set approach uses degrees
of membership in a set to deal with borderline cases.
For instance, we might decide that under criterion D
of the IUCN categories that a species with a population
size of 55 will have partial membership (say 0.3 on a
scale of 0 to 1) in the set of critically endangered spe-
cies (Regan et al. 2000). Species with lower population
sizes will have a higher degree of membership in the
set of critically endangered species. In the superval-
uational approach there is no unique sharpening of a
vague term. All acceptable sharpenings of the vague
concept are used to delineate the borderline region in
which the concept neither truly applies nor truly does
not apply. For criterion D of the IUCN categories this
might result in a range, say population sizes of 50–60
individuals, where a species is considered to be neither
critically endangered nor not critically endangered. The
supervaluational approach thus recognizes the exis-
tence of the borderline region, provides a way of de-
termining the extent of the borderline region, and al-
lows us to treat this region in a natural and intuitive
way. In answer to questions about how many objects
there are in a particular vague category, the superval-
uational approach leads very naturally to an answer in
terms of upper and lower bounds.

In the literature on vagueness the usual examples
employ predicates like ‘‘tall,’’ ‘‘affluent,’’ ‘‘mature,’’
and the like. All of these admit a very natural, nu-
merical ordering: we can order tallness by height in
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meters; we can order affluence by savings (or income)
in dollars, and we can order maturity by age in years.
It turns out that having this natural ordering is crucial
to most of the treatments of vagueness (including the
supervaluational approach, fuzzy methods, and even
the regimentation approach). Unfortunately many
vague terms have a nonnumerical character and so do
not readily lend themselves to standard treatments. In
fact, many crucial terms in conservation biology are
vague in this nonnumerical way. We have in mind here
vague predicates such as ‘‘threatened,’’ ‘‘critically en-
dangered,’’ ‘‘optimal habitat,’’ ‘‘viable population,’’
and so on. There is no single measure of endangerment,
for instance. Instead, we must construct multidimen-
sional measures involving measures of population size,
growth/decline rates, extent of habitat decline, and so
on (IUCN 1994, see also Burgman et al. 2001 for a
treatment of the vague predicate ‘‘habitat suitability’’).
Once such multidimensional measures have been put
in place, one of the various numerical treatments can
be brought to bear on the problem. It seems to us that
approaches such as these to nonnumerical vagueness
are theoretically well motivated and are the best way
to treat the problems arising from nonnumerical vague-
ness.

Context dependence

Context dependence is uncertainty arising from a
failure to specify the context in which a proposition is
to be understood. For example, suppose that it is said
that the population size of an unspecified taxon is small.
Without specifying the context, the audience is left
wondering whether the population size of the taxon in
question is small for a vertebrate species, small for a
plant species, or small in some other unspecified con-
text. Note that ‘‘small’’ is also vague but that vagueness
and context dependence are quite separate issues. The
vagueness persists after the context has been fixed. That
is, even after we are told the context of the predicate
in question, e.g., ‘‘small-for-a-plant-species,’’ there are
still borderline cases for this. Clearly the way to deal
with context dependence is to specify context. But
while the solution is clear, this kind of uncertainty is
no trivial matter; issues of context dependence arise in
classification of threatened species. For instance, much
of the IUCN classification scheme applies to terrestrial
vertebrate species. So, under the IUCN criteria, a spe-
cies is classified as endangered in the context of ‘‘en-
dangered-for-a-terrestrial-vertebrate-species.’’ Alter-
native classification criteria have been proposed for
plant and butterfly species so they can be considered
in the context of relevant threats and demographics of
plants and butterflies, using sharp boundaries for vague
terms that make sense for these taxa (van Swaay et al.
1997, Keith 1998, van Swaay and Warren 1999).

Ambiguity

Ambiguity is uncertainty arising from the fact that
a word can have more than one meaning and it is not

clear which meaning is intended. For example, the
word ‘cover’ is used routinely to describe vegetation
structural composition. The word is ambiguous be-
tween projective foliage cover (the proportion of the
ground covered by a vertical projection of the aerial
parts of plants e.g., Kershaw 1964:15), and crown cover
(the area encompassed by a vertical projection of tree
or shrub crown perimeters, e.g., Philip 1994:132). The
former definition excludes gaps within crowns from its
estimate of cover, whereas the latter definition includes
them, relying on the polygon formed by the outer edges
of the crown to measure cover. Ambiguity is often con-
fused with vagueness. However, the two types of un-
certainty are quite distinct. The ambiguity in the word
‘‘cover’’ does not give rise to borderline cases in the
way ‘‘endangered’’ does; there is nothing that is bor-
derline between projective foliage cover and crown
cover. Thus tools such as fuzzy logic, which allow for
the treatment of borderline cases, are generally of little
use in dealing with ambiguity. Ambiguity is best dealt
with by making clear which sense of the ambiguous
word in question is intended. Though, in practice, this
is often easier said than done.

Underspecificity

Underspecificity occurs when there is unwanted gen-
erality: the statement in question does not provide the
degree of specificity we desire. For example, the state-
ment that there will be rainy days ahead is underspecific
because we are left wondering: which days will be
rainy?; how many of them will be rainy?; and so on.
The statement: ‘‘the chance the Tasmanian tiger is ex-
tinct is between 0 and 1.0 (inclusive)’’ is also under-
specific. While it is true, it does not indicate that there
is a greater chance of the species being extinct than
not or vice versa. Underspecificity also arises in situ-
ations where data could have been obtained but are no
longer available. For example, in fauna and flora sur-
veys it was once sufficient to provide very imprecise
locations such as ‘‘inland Australia’’ or ‘‘north of Syd-
ney,’’ or to provide no location information at all. To-
day, most locations are recorded with Global Position-
ing Systems accurate to a few meters. Opportunistic
observations are used to assess temporal trends in spe-
cies distributions. Records made in the 1800s are es-
pecially valuable as signals of past distributions, but
underspecification of location renders many of them
unusable.

The best we can do with respect to underspecificity
is to provide the narrowest possible bounds on esti-
mates given the data, and to make available all the
information behind such statements. Unfortunately the
word ‘‘vague’’ is commonly used for both underspe-
cificity and borderline cases. We follow Sorensen
(1989) here and suggest that the term ‘‘vagueness’’ be
reserved for the borderline-case sense.
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Indeterminacy of theoretical terms

There is a rather subtle kind of uncertainty that arises
from indeterminacies in our theoretical terms. The
problem is that the future usage of theoretical terms is
not completely fixed by past usage. This means that
some of our theoretical terms although not ambiguous
now, have the potential for ambiguity. Or, if you prefer,
they are ambiguous but such ambiguities are not always
recognized when a term first comes into use. (This is
sometimes called the open texture of language.) Un-
certainty arising from this source is quite different from
and more insidious than ambiguity. When we encounter
a case of ambiguity we can always use other words to
disambiguate. But in the case of theoretical indeter-
minacy, this can only be done after the fact when new
information or usage of the word comes into effect.

An example of this kind of uncertainty is seen in the
application of the species concept. (The concept of
‘‘species’’ is also vague, but the theoretical indeter-
minacy associated with the term is quite distinct from
its vagueness.) Taxonomic revisions of Acacia brown-
iana in 1995 reclassified the taxon into Acacia brown-
iana, A. grisea, A. lateriticola, A. luteola, A. newbeyi,
and A. subracemosa. Prior to 1995, taxonomists did
not even know that there was an ambiguity in the term
Acacia browniana and would certainly not have the
taxonomic machinery nor the scientific vocabulary to
disambiguate. Theoretical indeterminacy might thus be
thought of as the potential for ambiguity. Theoretical
indeterminacy is also different from vagueness: there
are no borderline cases.

Theoretical indeterminacy is dealt with by making
conscious decisions about the future usage of theoret-
ical terms when the need presents itself. This is a highly
nontrivial matter though. The future usage must be con-
sistent with the past usage and it must be theoretically
well motivated and fruitful. The fact that this kind of
uncertainty cannot be dealt with now, has ramifications,
for instance, for museums and herbariums. It means
that there must be trade-offs between acquiring new
collections, and allocating resources to superficially re-
dundant collections that may become important, if a
taxon is revised.

There is another source of linguistic uncertainty in
ecology and conservation biology that defies straight-
forward classification. This is the uncertainty associ-
ated with terms such as ‘‘biodiversity’’ and ‘‘biocom-
plexity’’ where not only is there no concise statement
or accepted definition, but the very meanings are in
dispute. Such terms may well exemplify all sources of
linguistic uncertainty, though we believe that the prob-
lem here is best thought of as a radical kind of theo-
retical indeterminacy. The problem is that the relevant
theory is so recently developed that the meanings of
many of the theory’s terms are yet to be settled.

If this is correct, the solution is to develop the rel-
evant theory and allow it to fix the meanings in ways

that are fruitful and in keeping with the intuitive themes
the words initially evoke. It may turn out that some of
these terms are discarded because either they are not
fruitful to further theoretical development, or because
they are found to describe nothing, but even this is
progress. More commonly, suitable meanings are found
and agreed upon. In the meantime, the terms are more
like placeholders for theoretical terms to which mean-
ings will later be attributed. The focus should thus be
on the development of the theory (which, of course,
always includes development of the right set of lin-
guistic tools), not on unproductive arguments over
what such terms really mean. (See Lewis [1983] for
more on how to define theoretical terms.)

CONCLUSION

Uncertainty has many different sources. In any ap-
plication, uncertainties from different sources will
compound, including uncertainties from epistemic and
linguistic sources (e.g., Regan et al. 2001). It is also
important to point out that we do not claim that all
uncertainty can be neatly and easily classified into one
and only one of the categories we have presented or
that the categories presented here are the only ones
possible. It may well be that some of our categories
are redundant and perhaps some uncertainties seem to
fit more than one category. There may even be bor-
derline cases between categories. But the framework
above is relatively complete and unambiguous, pro-
viding a starting point to think about these often slip-
pery issues.

We have also discussed the different methods re-
quired to best deal with the different sources of un-
certainty. These appear in Table 1. A very interesting
and important question now arises: is there one method
capable of dealing with all sources of uncertainty? A
good reason to be skeptical that there is such a unified
treatment is that the methods outlined above to treat
epistemic and linguistic uncertainty are very different.
For instance, none of the methods to deal with lin-
guistic uncertainty are probabilistic, while many strat-
egies for treating epistemic uncertainty are. One of the
present authors has argued elsewhere that probabilities
cannot deal with all sources of uncertainty (Colyvan
2001).

While it is preferable to use the most appropriate
method for each type of uncertainty, intervals may be
able to cope with all types of numerical uncertainty
(i.e., the uncertainty about a parameter value) simul-
taneously. For instance, uncertainty in the number of
endangered species in a region that arises due to vague-
ness, measurement and systematic error, natural vari-
ation, and subjective judgment, can be subsumed with-
in upper and lower bounds. One of the costs of using
intervals is that they do not use all of the available
information about a number. Using an interval to bound
a frequency probability distribution loses information
about the central tendency, standard deviation, sample
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TABLE 1. The various sources of epistemic and linguistic uncertainty with their most appro-
priate general treatments (refer to relevant section for references related to the suggested
treatment).

Source of uncertainty General treatments

Epistemic uncertainty
Measurement error statistical techniques; intervals
Systematic error recognize and remove bias
Natural variation probability distributions; intervals
Inherent randomness probability distributions
Model uncertainty validation; revision of theory based on observation;

analytic error estimation (for meta-models)
Subjective judgment degrees of belief; imprecise probabilities

Linguistic uncertainty
Numerical vagueness sharp delineation; supervaluations; fuzzy sets;

intuitionistic, three-valued, fuzzy, paraconsistent
and modal logics; rough sets

Nonnumerical vagueness construct multidimensional measures then treat as
for numerical vagueness

Context dependence specify context
Ambiguity clarify meaning
Indeterminacy in theoretical

terms
make decision about future usage of term when

need arises
Underspecificity provide narrowest bounds; specify all available

data

size, distribution shape, and so forth. Furthermore, the
application of intervals to deal with compounding un-
certainty may introduce underspecificity where none
existed before. This is perhaps the cost of pursuing a
universal treatment. And intervals are only appropriate
for numerical uncertainty. Most instances of linguistic
uncertainty are not numerical and should be treated in
the most appropriate manner for their subcategory.

It may be that the best treatment of compounded
uncertainty is a numerical method that incorporates a
combination of all the best treatments of the separate
sources. Some methods already exist that combine
probabilistic and fuzzy set-theoretic methods to treat
the combination of vagueness and some types of epi-
stemic uncertainty. In such applications, the probability
of a vague event is quantified (Zimmerman 1996, Gab-
bay and Smets 1998). We should note that in such a
treatment the sources of uncertainty are treated sepa-
rately; probabilistic methods are adopted for epistemic
uncertainty and fuzzy set methods for vagueness. This
is different from an interval-based method where all
the uncertainty is combined. Other methods that inte-
grate probabilistic and fuzzy methods are the hybrid
numbers of Ferson and Ginzburg (1995). These at-
tempts to combine methods for dealing with two very
different types of numerical uncertainty fall short of
providing a unified treatment of all uncertainty. This
complaint may not be so serious, since vagueness may
well be the dominant source of linguistic uncertainty,
and it would seem that probabilities and intervals can
deal with all epistemic uncertainty (see Ferson and
Ginzburg [1996] and Ferson et al. [1999] for a dis-
cussion on the use of intervals and probabilities in risk
assessment).

Treatments of uncertainty in ecology and conser-
vation biology are nothing new, and while epistemic
uncertainty has largely been the focus, some studies
have acknowledged and dealt with both types of un-
certainty simultaneously. One notable example is the
IUCN categories and criteria for the classification of
threatened species. The IUCN categories explicitly deal
with nonnumerical vagueness (in the terms vulnerable,
endangered, and critically endangered) and natural var-
iation in population sizes (via the probability of ex-
tinction, Criterion E). Furthermore, a formal method,
based on intervals, exists to deal with the various types
of uncertainty in each of the parameters in the criteria
(Akçakaya and Ferson 1999, Akçakaya et al. 2000), as
well as a method to deal with numerical vagueness in
the categories (Regan et al. 2000). This recognition and
treatment of the numerous sources of uncertainty in
conservation biology results in reliable assessments of
threat, given the available data. However, such treat-
ment of both epistemic and linguistic uncertainty is
rare.

A comprehensive and systematic treatment of un-
certainty in the biological sciences is of considerable
importance. In this paper we have made some tentative
steps toward that goal by identifying the main sources
of uncertainty, including several that, to date, have not
been fully appreciated. We have also made recommen-
dations as to the most appropriate methods for dealing
with each kind of uncertainty. The issue of whether
there is a single method capable of dealing with all
uncertainty remains open. There is little doubt, though,
that the identification and treatment of uncertainty in
the biological sciences is a matter that deserves a great
deal of further investigation, and that many of the meth-
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ods employed routinely in ecology underestimate the
true extent of uncertainty.
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