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1.1 Introduction 

In September of 1802, Pierre Simon Laplace (1749–1827) used a capture– 
recapture type of approach to estimate the size of the human popula
tion of France (Cochran 1978; Stigler 1986). At that time, live births 
were recorded for all of France on an annual basis. In the year prior to 
September 1802, Laplace estimated the number of such births to be ap
proximately X = 1,000,000. These newly born individuals constituted 
a marked population. Laplace then obtained census and live birth data 
from several communities “with zealous and intelligent mayors” across 
all of France. Recognizing some variation in annual birth rates, Laplace 
summed the number of births reported in these sample communities for 
the three years leading up to the time of his estimate, and divided by three 
to determine that there were x = 71,866 births per year (marked individ
uals) in those communities. The ratio of these marked individuals to the 
total number of individuals in the sampled communities, y = 2,037,615 
was then the estimate 

71 866 , 
p = = .0 0353 

2 037 615 , , 

of the proportion of the total population of France that was newly born. 
On this basis, the one million marked individuals in the whole of France 
is related to the total population N as 

Np ≈ 1,000,000 

so that 

1 000 000 
N ≈ , , = 28 328 612 , ,

0 0353 . 
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Figure 1.1. Jeff Mason fires a shoulder-held cannon net used to capture Bristle-
thighed Curlews (Numenius tahitiensis) on the Seward Peninsula, spring 1989. 
(Photo by Robert Gill) 

This estimation procedure is equivalent to the Lincoln-Peterson capture– 
recapture estimator described in chapter 2. 

Although Laplace is commonly thought of as the first to use the capture– 
recapture idea, he was preceded by almost 200 years by John Graunt in his 
attempts to use similar methods to estimate the effect of plague and the size 
of populations in England in the early 1600s (Hald 1990). The theories 
and applications of capture–recapture have moved far beyond the concepts 
of John Graunt and Pierre Laplace in the ensuing centuries. Current meth
ods do, however, share the basic concept, of ratios between known and 
unknown values, that guided those pioneers. 

Our purpose in this book is to provide a guide for analyzing capture– 
recapture data that can lead the naive reader through basic methods, simi
lar to those used by the earliest of workers, to an understanding of modern 
state of the art methods. This handbook is intended primarily for biologists 
who are using or could use capture–recapture to study wildlife populations. 
To the extent practicable, therefore, we have kept mathematical details to 
a minimum. We also have, beginning with this first chapter, attempted to 
explain some of the mathematical details that are necessary for a complete 
conceptual understanding of the methodologies described. Also, authors 
of each chapter have been encouraged to provide all the references that 
are necessary to enable readers to obtain more details about the deri
vations of the methods that are discussed. Therefore, this book also 
will be a useful introduction to this subject for statistics students, and 
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a comprehensive summary of methodologies for practicing biometri
cians and statisticians. 

The book is composed of three sections. Section 1 is this chapter, 
which is intended to set the scene for the remainder of the book, to cover 
some general methods that are used many times in later chapters, and 
to establish a common notation for all chapters. Section 2 consists of 
seven chapters covering the theory for the main areas of mark–recapture 
methods. These chapters contain some examples to illustrate the analyti
cal techniques presented. Section 3 consists of two chapters in which we 
explicitly describe some examples of data sets analyzed by the methods 
described in chapters 2 to 8. When useful throughout the book, we dis
cuss computing considerations, and comment on the utility of the differ
ent methods. 

1.2 Overview of Chapters 2 to 8 

Chapters 2 to 8 cover the main methods available for the analysis of 
capture–recapture models. For those who are unfamiliar with these meth
ods the following overviews of the chapters should be useful for clarify
ing the relationships between them. Figure 1.2 contains a flowchart of the 
capture–recapture methods described in this section of the book. This 
flowchart may help to clarify the relationship between analyses, and will 
indicate the chapter (or section) containing methods appropriate for a 
particular data set. 

Closed-population Models 

A closed population is one in which the total number of individuals is 
not changing through births, deaths, immigration, or emigration. The first 
applications of capture–recapture methods were with populations that 
were assumed to be closed for the period of estimation. It is therefore 
appropriate that the first chapter in section 2 of this book should describe 
closed-population models. In practice, most real populations are not 
closed. Sometimes, however, the changes over the time period of interest 
are small enough that the assumption of closure is a reasonable approxi
mation, and the effects of violating that assumption are minimal. For this 
reason, the analysis of capture–recapture data from closed populations 
continues to be a topic of interest to biologists and managers. 

In chapter 2, Anne Chao and Richard Huggins begin by discussing some 
of the early applications of the capture–recapture method with one sample 
to mark some of the individuals in a population, and a second sample to 
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Huggins models 
Section 4.2

Models Incorporating 
Covariates 

Multi-state 
models 

Chapter 8 

Otis models 
Sections 2.3 

and 4.2 

Were 
covariates 
measured? 

Were live 
recaptures 
obtained? 

Jolly-Seber 
models 

Chapter 3 

Tag recovery 
models 

Chapter 6 

Modern open 
population models 

Chapter 5 

Joint modeling of 
live and dead 

recovery 
Chapter 7 

Can measured 
covariates explain 

unequal 
catchability? 

Were individuals 
captured in 

different “states”? 

Continuous 
time models 
Section 4.3 

Were individuals 
captured at 

discrete times? 

Were tags 
recovered from 
dead animals? 

Is the 
population open? 

No Yes 

No Yes No Yes 

No Yes No Yes 

No Yes No Yes 

Figure 1.2. Flowchart of the methods described in this book. Starting with Is 
the population open?, unshaded boxes present Yes / No questions about the 
characteristics of the capture–recapture study and data. The paths induced by 
answers to these questions terminate at shaded boxes, which give the applicable 
models and this volume’s chapter or section reference. 

see how many marked animals are recaptured. The data obtained from 
the two samples can be used to estimate the population size. 

A natural extension of the two-sample method, which can be traced 
back to Schnabel (1938), involves taking three or more samples from a 
population, with individuals being marked when they are first caught. 
The analysis of data resulting from such repeated samples, all within a 
time period during which the population is considered closed, is also 
considered in chapter 2. The goal still is estimation of the population 
size, but there are many more models that can be applied in terms of 
modeling the data. Chao and Huggins therefore conclude chapter 2 by 
noting the need for more general models. 
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The discussion is continued by Chao and Huggins in chapter 4. There 
they consider how the probability of capture can be allowed to vary with 
time, the capture history of an animal, and different animals, through the 
Otis et al. (1978) series of models. Other topics that are covered by Chao 
and Huggins in chapter 4 are the incorporation of covariates that may 
account for variation in capture probabilities related to different types of 
individuals (e.g., different ages or different sexes) or different sample times 
(e.g., the sampling effort or a measure of weather conditions), and a range 
of new approaches that have been proposed for obtaining population size 
estimates. 

Basic Open-population Models 

An open population is one that is (or could be) changing during the course 
of a study, because of any combination of births, deaths, immigration, or 
emigration. Because most natural wildlife populations are affected in this 
way, the interest in using capture–recapture data with open popula
tions goes back to the first half of the 20th century when ecologists such 
as Jackson (1939) were sampling populations that were open, and devel
oping methods for estimating the changing population sizes, the survival 
rates, and the number of individuals entering the populations between 
sample times. 

A major achievement was the introduction of maximum likelihood es
timation for the analysis of open-population capture–recapture data by 
Cormack (1964), Jolly (1965), and Seber (1965). This led to the devel
opment of what are now called the Cormack-Jolly-Seber (CJS) and the 
Jolly-Seber (JS) models. The CJS model is based solely on recaptures of 
marked animals and provides estimates of survival and capture probabi
lities only. The JS model incorporates ratios of marked to unmarked ani
mals and thereby provides estimates of population sizes as well as survival 
and capture probabilities. The fundamental difference between the two 
is that the JS model incorporates the assumption that all animals are ran
domly sampled from the population and that captures of marked and un
marked animals are equally probable. The CJS model, on the other hand, 
does not make those assumptions and examines only the recapture histo
ries of animals previously marked. 

The CJS and JS models are the main topics of chapter 3 by Kenneth H. 
Pollock and Russell Alpizar-Jara. For the JS model, equations are provided 
for estimates of population sizes at sample times, survival rates between 
sample times, and numbers entering between sample times. In addition, 
there is a discussion of versions of this model that are restricted in various 
ways (e.g., assuming constant survival probabilities or constant capture 
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probabilities) or generalized (e.g., allowing parameters to depend on the 
age of animals). The CJS model, which utilizes only information on the re
captures of marked animals, is then discussed. As noted above, this model 
has the advantage of not requiring unmarked animals to be randomly 
sampled from the population, but the disadvantage that this allows only 
survival and capture probabilities to be estimated. Population sizes, which 
were the original interest with capture–recapture methods, cannot be di
rectly estimated without the random sampling, which allows extrapolation 
from the marked to the unmarked animals in the population. 

Recent Developments with Open-population Models 

Since the derivation of the original CJS and JS models there have been 
many further developments for modeling open populations, which are 
covered by James D. Nichols in chapter 5. These developments are pri
marily due to the increasing availability of powerful computers, which 
make more flexible, but also much more complicated, modeling procedures 
possible. Parameter values can be restricted in various ways or allowed 
to depend on covariates related either to the individuals sampled or to 
the sample time. 

The flexible modeling makes it possible to consider very large numbers 
of possible models for a set of capture–recapture data, particularly if the 
animals and sample times have values of covariates associated with them. 
The larger number of possible models that can be considered with modern 
computerized approaches elevates the importance of objective model se
lection procedures that test how well each model fits the data. It always 
has been necessary to assess whether models were apt, how well they fit 
the data, and which of the models should be considered for final selec
tion. Our greater ability now to build a variety of models is accompanied 
by a greater responsibility among researchers and managers to perform 
the comparisons necessary so that the best and most appropriate models 
are chosen. 

The methodological developments in chapter 5 were motivated prima
rily by biological questions and the need to make earlier models more bi
ologically relevant. This underlying desire to generalize and extend the 
CJS model resulted in several new models. These methods, covered in 
chapter 5, include reverse-time modeling, which allows population growth 
rates to be estimated; the estimation of population sizes on the assumption 
that unmarked animals are randomly sampled; models that include both 
survival and recruitment probabilities; and the robust design in which in
tense sampling is done during several short windows of time (to meet the 
assumption of closure) that are separated by longer intervals of time during 
which processes of birth, death, immigration, and emigration may occur. 
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Population size estimates are derived from capture records during the short 
time periods of the robust design, and survival is estimated over the longer 
intervals between periods. 

Tag-recovery Models 

The tag-recovery models that are discussed by John M. Hoenig, Kenneth 
H. Pollock, and William Hearn in chapter 6 were originally developed 
separately from models for capture–recapture data. These models are pri
marily for analyzing data obtained from bird-banding and fish-tagging 
studies. In bird-banding studies, groups of birds are banded each year for 
several years and some of the bands are recovered from dead birds, while 
in fish-tagging studies, groups of fish are tagged and then some of them 
are recovered later during fishing operations. The early development of 
tag-recovery models was started by Seber (1962), and an important mile
stone was the publication of a handbook by Brownie et al. (1978) in 
which the methods available at that time were summarized. 

The basic idea behind tag-recovery models is that for a band to be re
covered during the jth year of a study, the animal concerned must sur
vive for j − 1 years, die in the next year, and its band be recovered. This 
differs from the situation with capture–recapture data where groups of 
animals are tagged on a number of occasions and then some of them are 
recaptured later while they are still alive. 

Joint Modeling of Tag-recovery and Live-recapture 
or Resighting Data 

It is noted above that the difference between standard capture–recapture 
studies and tag-return studies is that the recaptures are of live animals in 
the first case, while tags are recovered from dead animals in the second 
case. In practice, however, the samples of animals collected for tagging 
do sometimes contain previously tagged animals, in which case the study 
provides both tag-return data and data of the type that comes from stan
dard capture–recapture sampling. 

If there are few recaptures of live animals, they will contribute little 
information and can be ignored. If there are many live recaptures, how
ever, it is unsatisfactory to ignore the information they could contribute to 
analyses, leading to the need for the consideration of methods that can use 
all of the data. This is the subject of chapter 7 by Richard J. Barker, who 
considers studies in which animals can be recorded after their initial tag
ging (1) by live recaptures during tagging operations, (2) by live resight
ings at any time between tagging operations, and (3) from tags recovered 
from animals killed or found dead between tagging occasions. In addition 
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to describing the early approaches to modeling these types of data, which 
go back to papers by Anderson and Sterling (1974) and Mardekian and 
McDonald (1981), Barker also considers the use of covariates, model 
selection, testing for goodness of fit, and the effects of tag loss. 

Multistate Models 

The original models of Cormack (1964), Jolly (1965), and Seber (1965) 
for capture–recapture data assumed that the animals in the population be
ing considered were homogeneous in the sense that every one has the same 
probability of being captured when a sample was taken, and the same 
probability of surviving between two sample times. Later, the homogene
ity assumption was relaxed, with covariates being used to describe differ
ent capture and survival probabilities among animals. However, this still 
does not allow for spatial separation of animals into different groups, with 
random movement between these groups. For example, consider an animal 
population in which members move among different geographic locales 
(e.g., feeding, breeding, or molting areas). Also consider that survival and 
capture probabilities differ at each locale. Covariates associated with the 
individual animals or sample times are insufficient to model this situation, 
and the movement between locations must be modeled directly. 

In chapter 8, Carl J. Schwarz considers the analysis of studies of this 
type, where the population is stratified and animals can move among strata 
or states while sampling takes place. Analyses for these types of situations 
were first considered by Chapman and Junge (1956) for two samples from 
a closed population, extended for three samples from an open population 
by Arnason (1972, 1973), and to k samples from an open population by 
Schwarz et al. (1993b) and Brownie et al. (1993). These models can be 
used to study dispersal, migration, metapopulations, etc. Although the 
models were developed primarily to account for the physical movement 
of animals among geographic strata, the models described in chapter 8 
also work where states are behavioral (e.g., breeding or nonbreeding an
imals each of which may be more or less available than the other) or habi
tat related rather than just geographic. Chapter 8 also shows how live 
and dead recoveries can be treated as different states, and describes how 
covariates that change randomly with time can be used to describe indi
viduals in different states. 

The first part of chapter 8 deals with the estimation of migration, cap
ture, and survival probabilities for a stratified population, using a gen
eralization of the Cormack-Jolly-Seber model. The last part considers 
the estimation of population size using two or several samples from 
a stratified closed population, and using several samples from an open 
population. 
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1.3 Maximum Likelihood with Capture–Recapture Methods 

Early methods for analyzing capture–recapture and tag-recovery data re
lied upon ad hoc models for their justification. However, by the late 1960s 
the use of well-defined probability models with maximum likelihood esti
mation of the unknown parameters had become the standard approach. 
The method of maximum likelihood, which is known to produce estimates 
with good properties under a wide range of conditions, consists of two 
steps. First, there is the construction of a model that states the probability 
of observing the data as a function of the unknown parameters that are of 
interest. This is called the likelihood function. Second, the estimates of the 
unknown parameters are chosen to be those values that make the like
lihood function as large as possible, i.e., the values that maximize the 
likelihood. 

For the data considered in this book, three related types of likelihood 
functions need to be considered. The first and simplest arises by modeling 
the probability of observing the data from single independent animals, and 
then constructing the full likelihood as the product of probabilities for 
all animals. The second type of likelihood arises when data are grouped, 
which leads to use of the multinomial distribution to describe the proba
bility of observing all the capture data. The third type of likelihood arises 
when data are collected from independent groups, which leads to likeli
hoods that are the product of multinomial distributions. 

To illustrate the first type of likelihood, consider a four-sample exper
iment where n1 animals are marked in the first sample, no more mark
ing is done, and recapture data are obtained during samples 2, 3, and 4. 
Suppose that the probability of an animal surviving from the time of the 
jth sample to the time of the next sample is φj ( j = 1, 2, or 3), and the 
probability of a live animal being captured in the jth sample is pj. 
Assume further that a particular animal was captured on the first cap
ture occasion, and resighted on the third and fourth capture occasions. 
The history of captures and resightings for this animal can be indicated 
by the pattern of digits 1011, where a 1 in the jth position (counting 
from the left) indicates capture or resight during the jth occasion, and 0 
in the jth position indicates that the animal was not seen during the jth 
occasion. Under these assumptions, the probability of observing this 
particular pattern of resightings, conditional on the original capture, is 

P = φ1(1 − p2)φ2p3φ3p4 (1.1) 

which is obtained by multiplying together the probabilities of surviving 
until the second sample (φ1), not being captured in the second sample 
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(1 − p2), surviving from the second to third sample times (φ2), getting 
captured in the third sample (p3), surviving from the third to fourth sample 
times (φ3), and finally getting captured in the fourth sample (p4). 

Probabilities of capture and survival for each animal in a series of sam
ples can be used to describe the probabilities of their capture histories as in 
equation 1.1. The likelihood of observing all of the data is then the prod
uct of the probabilities, i.e., 

n1 

L = ∏Pj (1.2) 
j =1 

where Pj is the probability for the jth animal, assuming that the history 
for each animal is independent of the history for all of the other animals. 
Maximum likelihood estimation would involve finding the values of the 
survival and capture probabilities that maximize L. Note that φ3 and p4 
cannot be estimated individually in this example because it is not possi
ble to tell whether a large number of captured animals in the fourth and 
last sample is due to a high survival rate from the previous sample time 
or a high probability of capture. Therefore, only the product φ3p4 can 
estimated. Similarly, the capture probability cannot be estimated for the 
first occasion. In general, this sort of limitation applies at both ends of 
capture–recapture histories. 

The second type of likelihood is for grouped data. In this case, the 
multinomial distribution is used to give the probability of the observed 
data. With this distribution there are m possible types of observation, 
with the ith type having a probability θi of occurring, where 

θ1 + θ2 + ⋅ ⋅ ⋅ + θm = 1 

If there is a total sample size of n, with ni observations of type i occur
ring so that n = n1 + n2 + ⋅ ⋅ ⋅ + nm, then the multinomial distribution 
gives the probability of the sample outcome (the likelihood) to be 

n! n n  2 n1 mL = θ θ  ⋅ ⋅ ⋅ θ (1.3)n n  ⋅ ⋅ ⋅ n! !  !1 2 m 

a probability statement that is justified in many elementary statistics texts. 
Typically, when a multinomial likelihood function like this occurs 

in the following chapters then the θ parameters will themselves be 
functions of other parameters, which are the ones of real interest. For 
example, consider a three-sample capture–recapture study on a closed 
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population of size N, with a capture probability of pi for the ith sample. 
The possible capture–recapture patterns with their probabilities are 
then 

P(000) = (1 − p1)(1 − p2)(1 − p3) = θ1 

P(100) = p1(1 − p2)(1 − p3) = θ2 

P(010) = (1 − p1)p2(1 − p3) = θ3 

P(110) = p1p2(1 − p3) = θ4 

P(001) = (1 − p1)(1 − p2)p3 = θ5 

P(101) = p1(1 − p2)p3 = θ6 

P(011) = (1 − p1)p2 p3 = θ7 

and 

P(111) = p1 p2 p3 = θ8 

If ni observations are made of the ith capture–recapture pattern, then the 
likelihood function would be given by equation 1.3, with the θ values 
being functions of the p values, as shown above. In addition, because 
the number of uncaptured animals is unknown, this must be set equal 
to n1 = N − n2 − n3 − ⋅ ⋅ ⋅ − n8 in equation 1.3. Maximum likelihood esti
mates of N, p1, p2, and p3 would then be found by maximizing the like
lihood with respect to these four parameters. 

The third type of likelihood function occurs when the probability of 
the observed data is given by two or more multinomial probabilities 
like (1.3) multiplied together. This would be the case, for example, if the 
three-sample experiment just described was carried out with the results 
recorded separately for males and females. In that case there would be 
one multinomial likelihood for the males and another for the females. 
The likelihood for all the data would then be the product of these two 
multinomials. The parameters to be estimated would then be the number 
of males, the number of females, and capture probabilities that might or 
might not vary for males and females. 

Likelihood Example 1 

In this and the next example we illustrate some of the calculations in
volved in the maximum likelihood method. These examples are designed 
to provide the reader with a better understanding of what is meant by 
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the phrase “estimates can be obtained by maximum likelihood” when it 
is used in later chapters. They are by no means a full treatment of the 
maximum likelihood method, but should be sufficient to provide read
ers with a clearer idea of the methodology behind many of the capture– 
recapture estimates mentioned later. 

Once a likelihood for the observed data is specified, the second step 
in the maximum likelihood estimation process is to maximize the likeli
hood to obtain parameter estimates. To illustrate this second step con
sider again the four-sample capture–recapture experiment described above 
for the first type of likelihood. Suppose that n1 = 2 animals are captured 
and marked in the first sample, and that one of these animals is recaptured 
in samples three and four, while the other animal is only recaptured in 
sample four. The capture histories for these two animals are then repre
sented by 1011 and 1001. 

Following similar logic to that used to derive equation 1.1, the proba
bilities of the individual capture histories are 

P1 = φ1(1 − p2)φ2p3φ3p4 

and 

P2 = φ1(1 − p2)φ2(1 − p3)φ3p4 

Assuming that the results for the two captured animals were indepen
dently obtained, the full likelihood of obtaining both the capture histo
ries is 

2 

L = ∏P = φ 1 − p )φ p φ p φ1 1 − p )φ2 1 − p )φ3 4p[ (  (j 1 2 2 3 3 4 ][ (  2 3 ] 
j =1 

Typically, the natural logarithm of L is taken at this point because L and 
ln(L) are maximized by the same parameter values, and the logarithmic 
function ln(L) is generally easier to maximize on a computer. The log-
likelihood for this example is 

ln(L) = ln(P1) + ln(P2) 

= ln(φ1) + ln(1 − p2) + ln(φ2) + ln(p3) + ln(φ3) + ln(p4) + ln(φ1) 

+ ln(1 − p2) + ln(φ2) + ln(1 − p3) + ln(φ3) + ln(p4) 

= 2[ln(φ1) + ln(1 − p2) + ln(φ2) + ln(φ3) + ln(p4)] + ln(p3) 

+ ln(1 − p3) 
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The process of “maximizing the likelihood” essentially entails repeat
edly modifying the values of φi and pi until ln(L) cannot be increased 
any more. To start the process, a set of initial parameters is defined. In 
this example, suppose that the maximization process is started with 
φi = 0.5 for all i, and pi = 0.5 for all i. Putting these initial values into 
ln(L) gives 

ln(L) = ln(0.5) + ln(0.5) + ln(0.5) + ln(0.5) + ln(0.5) + ln(0.5) 

+ ln(0.5) + ln(0.5) + ln(0.5) + ln(0.5) + ln(0.5) + ln(0.5) 

= 12 ln(0.5) 

= −8.32 

It is then possible to get progressively closer to the final maximum by a 
judicious choice of the changes to make to the parameters. In particular, 
using the theory of calculus it is possible to determine the direction to 
change each of the parameters so that ln(L) will increase. However, the 
magnitude of the changes that will assure that the new values produce 
the maximum is not known. Consequently, small changes in the param
eters are made until further changes will not increase ln(L). 

The technique relies on the calculation of the derivatives of ln(L) with 
respect to the parameters, to specify which changes in the parameters 
will increase ln(L). These details are explained in texts on calculus, but are 
unnecessary here. For illustrating the calculations, all one needs to know 
is that the derivatives for the example being considered specify that chang
ing the parameter estimates to φ1 = 0.55, φ2 = 0.55, φ3 = 0.55, p2 = 0.45, 
p3 = 0.50, and p4 = 0.55 will increase ln(L). To check this, these values 
can be used to calculate ln(L), which gives 

ln(L) = ln(0.55) + ln(0.55) + ln(0.55) + ln(0.5) + ln(0.55) + ln(0.55) 

+ ln(0.55) + ln(0.55) + ln(0.55) + ln(0.5) + ln(0.55) + ln(0.55) 

= 10 ln(0.55) + 2 ln(0.5) 

= −7.36 

Repeating the process of calculating the gradient and changing the pa
rameter estimates will eventually maximize ln(L). For example, the new 
derivatives calculated at the last parameter values specify that chang
ing the parameter estimates to φ1 = 0.59, φ2 = 0.59, φ3 = 0.59, p2 = 0.41, 
p3 = 0.50 and p4 = 0.59 will increase ln(L). The ln(L) value with these 
new parameter estimates is − 6.66. 
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In this particular example, the likelihood is overparameterized because 
there are six parameters and only two capture histories. Overparame
terization causes a number of problems, and, in particular, means that 
some parameters must be assigned arbitrary values to fix the other 
parameters. This overparameterized likelihood was used here, however, 
only to illustrate calculation of individual ln(L) values. In the next section, 
more capture histories are used and a more complicated likelihood func
tion is illustrated. 

Likelihood Example 2 

In the last example, two capture histories were used to illustrate calcula
tion of individual ln(L) values. In this section, the more complicated like
lihood function of the Cormack-Jolly-Seber (CJS) model that is described 
in detail in chapter 3 and 5 is used to illustrate the process of maximizing 
the likelihood. 

Consider the situation where animals in an open population are cap
tured, marked, and released back into the population at each of eight 
capture occasions. To define the CJS likelihood, parameters pj and φj from 
the previous section are needed, plus an additional parameter for the 
probability that an animal is never seen after a certain sample occasion. 
Recall that pj is the probability that an animal in the population is cap
tured or observed at sampling occasion j, and that φj is the probability 
that an animal in the population survives from sampling occasion j to 
j + 1. The new parameter needed for this situation will be called χj. It is 
the probability that an animal is not caught or seen after sampling occa
sion j. 

Consider the capture history 01011000. Under the CJS model, the 
probability of this capture history occurring, conditional on the first cap
ture, is 

P = φ2(1 − p3)φ3p4φ4p5χ5 

The first part of this expression, φ2(1 − p3)φ3p4φ4p5, is justified as in 
earlier expressions of this type, so that a φj occurs for each interval be
tween the first and last sampling occasions when the animal was cap
tured, a pj parameter occurs for each occasion that the animal is captured 
or seen, and a (1 − pj) term occurs for each occasion that the animal is 
not captured or seen. The second part of P represents the probability 
that the animal was not seen after occasion 5, and is represented by the 
parameter χ5. 

The χj parameters are, in fact, functions of the φj and pj parameters. To 
see this, consider the eight-sample capture–recapture study. By definition, 
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χ8 = 1 because there is no possibility of capturing an animal after sample 
eight. If an animal was last seen in the seventh sample, then the probabil
ity of not seeing it in the eighth sample is the probability that the animal 
died, plus the probability that it lived to the time of sample eight but 
eluded capture, i.e., 

χ7 = (1 − φ7) + φ7(1 − p8) 

If an animal was last seen in the sixth sample, then the probability of 
not seeing the animal in the seventh or eighth sample is the probability 
that the animal died between the times of the sixth and seventh sam
ples, plus the probability that it survived to the time of sample seven 
but eluded capture and then subsequently either died between the times 
of the seventh and eighth samples or eluded capture in the eighth sample, 
so that 

χ6 = (1 − φ6) + φ6(1 − p7)[(1 − φ7) + φ7(1 − p8)] 

= (1 − φ6) + φ6(1 − p7)χ7 

In fact, χj for any j can be calculated in the same way using the general 
recursive formula 

χj = 1 − φj + φi(1 − pj)χj + 1 

Now suppose that eight samples are taken and the capture histories 

10100000 11000000 

10001000 00010100 

10100000 01000000 

11000000 00101000 

10000000 00000110 

11000000 00001100 

11100000 00010001 

are obtained for 14 animals. Suppose further that it is assumed that 
the probability of survival was constant during the study and that the 
probability of capture was constant for all samples. If Pi is the proba
bility of capture history i occurring under the CJS model, then the full 
log likelihood for this set of capture histories is the sum of ln(Pi) for 
i = 1 to 14, i.e., ln(L) = Σ ln(Pi). If the constant probability of survival 
parameter is 0.6 and the constant probability of capture parameter is 
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Figure 1.3. The full likelihood surface for the example with eight sample times 
and information on the captures and recaptures of 14 animals. 

0.2, then the log likelihood for this set of data could be calculated by 
setting φ1 = φ2 = ⋅ ⋅ ⋅ = φ8 = 0.6 and p2 = p3 = ⋅ ⋅ ⋅ = p8 = 0.2 in the CJS 
expression for Pj, taking the logarithms, and summing. If these calcu
lations are carried out then it is found that ln(L) = −37.94. If the prob
ability of survival were changed to 0.65 and probability of capture 
changed to 0.25, then ln(L) = −35.18. According to the theory of max
imum likelihood, the parameters φ = 0.65 and p = 0.25 have a higher 
likelihood and are therefore better than the parameters φ = 0.60 and 
p = 0.20. 

A computer can be programmed to repeatedly improve estimates of 
the parameters until ln(L) reaches a point where it cannot be increased 
further. For example, the SOLVER routine in Microsoft Excel can be 
used for this purpose providing that the likelihood function is not too 
complicated. With the example set of data, ln(L) will eventually reach a 
maximum of −32.60 when the survival parameter is φ = 0.78 and the 
capture probability parameter is p = 0.35. Because this example involves 
only two parameters, the entire likelihood surface is easy to plot and vi
sualize, as shown in figure 1.3. 

It is also possible to estimate the standard errors of parameter esti
mates from the likelihood function. The mathematical details justify
ing these estimates involve the second derivatives of ln(L), and will not 
be covered here. It suffices to say that the curvature of the likelihood 

http:=�37.94
http:=�35.18
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provides some indication about the variance of the maximum likeli
hood estimate. For example, figure 1.3 shows that the likelihood is rel
atively flat for φ between 0.4 and 0.9, and p between 0.15 and 0.6. It 
can therefore be argued that any set of parameters in this flat region of 
the likelihood is reasonable. In general, if the likelihood has a flat re
gion that is large, then the maximum likelihood estimates have large 
variances, but if the likelihood does not have a flat region, or the flat 
region is small, then the maximum likelihood estimates have small 
variances. 

1.4 Model Selection Procedures 

With the flexible modeling procedures that have become possible in re
cent years there has been a considerable increase in the number of mod
els that can be considered for data sets with many sampling occasions. 
For example, with an open population it is often the case that capture 
and survival probabilities can be allowed to vary with time, the sex of 
the animal, weather conditions, etc. The problem is then to choose a 
model that gives an adequate representation of the data without having 
more parameters than are really needed. 

There are two results that may be particularly useful in this respect. 
First, suppose that two alternative models are being considered for a set 
of data. Model 1 has I estimated parameters, and a log-likelihood func
tion of ln(L1) when it is evaluated with the maximum likelihood esti
mates of the parameters. Model 2 is a generalization of model 1, with 
the I estimated parameters of model 1 and another J estimated parame
ters as well, and it has a log-likelihood function of ln(L2) when evaluated 
with the maximum likelihood estimates of the parameters. Because model 
2 is more general (e.g., more complex) than model 1, it will be the case 
that ln(L2) is less than or equal to ln(L1). However, if in fact the extra J 
parameters in model 2 are not needed and have true values of zero, 
then the reduction in the log likelihood in moving from model 1 to 
model 2, 

D = 2[ln(L1) − ln(L2)] (1.4) 

will approximate a random value from a chi-squared distribution with 
J degrees of freedom. Consequently, if D, the difference or deviance, is 
significantly large in comparison with values from the chi-squared 
distribution, then this suggests that the more general model 2 is needed 
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to properly describe the data. If, on the other hand, D is not significantly 
large, then this suggests that the simpler model 1 is appropriate. 

A limitation with the test just described is that it applies only to nested 
models, that is, where one model is a special case or subset of another 
model. This has led to the adoption of alternative approaches to model 
selection that are based on Akaike’s information criterion (AIC) (Akaike 
1973; Burnham and Anderson 1998). 

In its simplest form, AIC model selection involves defining a set of 
models that are candidates for being chosen as the most suitable for 
the data. Each model is then fitted to the data and its corresponding 
value for 

AIC = −2 ln(L) + 2P (1.5) 

is obtained, where L is the maximized likelihood for the model, and P is 
the number of estimated parameters. The model with the smallest value 
for AIC is then considered to be the “best” in terms of a compromise be
tween the goodness of fit of the model and the number of parameters that 
need to be estimated. The balancing of model fit and number of parame
ters in the model is important in determining the precision of the estimates 
derived. 

A further comparison between models can be based on calculating 
Akaike weights (Buckland et al. 1997). If there are M candidate models 
then the weight for model i is 

wi = 
exp(−∆ i/ ) (1.6)2 

exp( 2 ∆ 2 / ) ∆1/ ) + exp( 2/ ) + ⋅ ⋅ ⋅ + exp(∆M 2 

where ∆i is the difference between the AIC value for model i and the 
smallest AIC value for all models. The Akaike weights calculated in this 
way are used to measure the strength of the evidence in favor of each of 
the models, with a large weight indicating high evidence. 

There are some variations of AIC that may be useful under certain 
conditions. In particular, for small samples (less than 40 observations 
per parameter) a corrected AIC can be used, which is 

2P P( + 1)
AIC c = AIC + 

( − −  ) 
(1.7) 

n P  1 

where n is the number of observations and P is the number of estimated 
parameters. Also, if there is evidence that the data display more variation 
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than expected based on the probability model being used then this can 
be allowed for using the quasi-AIC values 

L
QAIC = −2 ln( ) + 2P (1.8) 

ĉ 

where ĉ is an estimate of the ratio of the observed amount variation in 
the data to the amount of variation expected from the probability model 
being assumed, as explained more fully in chapter 9. The method for ob
taining the estimate ĉ depends on the particular circumstances. When 
more variation than expected under a certain model is displayed, the 
data are said to be “overdispersed.” Overdispersion can arise in a number 
of ways. The most common causes are model misspecification (lack of 
fit) and a lack of true independence among observations. For example, 
the statistical likelihood for a set of capture data may assume that cap
ture histories follow a multinomial distribution with a particular set of 
probabilities. If there is more variation in the capture histories than pre
dicted by the multinomial distribution, the probabilities assumed in the 
multinomial model are incorrect, implying that the covariate model is 
misspecified, or there may be unaccounted for dependencies among the 
histories. In some but not all cases, apparent overdispersion can be reme
died by incorporating more or different covariates into the model. Of
ten, however, it will not be possible to account for some amount of 
overdispersion in the data. 

1.5 Notation 

A good deal of notation is necessary for describing the models used in 
the remainder of this book. The variation in notation can be quite con
fusing, particularly if sections of the book are read in isolation. To help 
reduce this confusion, all authors have standardized their notations, to 
the maximum extent practicable. In table 1.1 we have provided a sum
mary of most of the notation used in the volume. 
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TABLE 1.1 
Partial list of notation used throughout the book 

Symbol Definition 

An index for individual animals. Example: hi denotes the capture 
history for the ith animal. 

j An index for capture occasions (sample times). Example: pj is the 
probability of capture for the jth sample. 

k The number of capture occasions (samples) 
N A population size 
R A number of animals released 
m or n The number of animals with a certain characteristic. Examples: mh is 

the number of animals with capture history h, and nj is the number of 
animals captured in sample j. 

h A capture history. example: h = 001010. 
φ An apparent survival probability 
p A capture probability 
γ A seniority probability 
E A probability of emigration 
χ The probability of not being seen after a trapping occasion 
ξ The probability of not being seen before a trapping occasion 
M The number of marked animals in the population 
S A pure survival probability (not involving the probability of 

emigration); also, the number of strata in a multistrata model 
F A probability of not emigrating, equal to 1 − E. 
R A reporting probability 
ρ A resighting probability 
F A tag recovery probability, equal to r(1 − S) when there is no 

emigration 
ψ A probability of moving between strata from one sampling occasion 

to the next for a multistrata model 

Note. In some cases, symbols not listed here may be defined to represent different things 
in different chapters. For example, in chapter 6 S represents a pure survival probability 
that does not include probability of emigration, while in chapter 8 S represents the number 
of strata in a multistrata model. These cases have been kept to a minimum and the mean
ing of each symbol is clear from the context. Symbols listed here can be subscripted or su
perscripted as needed. For example, Ni might denote the sample size at the time of the ith 
sample time. Also, a caret is often used to indicate an estimate, so that N̂ indicates an esti
mate of N. 
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Figure 1.4. Black bear (Ursus americanus), near Council, Idaho, 1973, wearing 
numbered monel metal ear tags. (Photo by Steven C. Amstrup) 




