
Generalized Additive Models 
(GAMs)

Israel Borokini
Advanced Analysis Methods in Natural Resources and Environmental Science 

(NRES 746)

October 3, 2016



Outline

• Quick refresher on linear regression

• Generalized Additive Models
• Statistical expression

• Operations

• Research Applications

• R packages for GAMs

• Examples

• K selection



Regression
• Regression methods are used to investigate relationships between 

predictors and response variables

• A good model should perform three functions: description, inference 
and predictions



Linear Regression Model
• Bivariate regression: Y = α + βX + ε

• Multivariate regression: Y = α + β1X1 + β2X2 + … + βnXn + ε

• Quadratic regression: Y = α + β1X1 + β2X2
2 + ε

• Polynomial regression: Y = α + β1X1 + β2X2
2 + β3X3

3 + βnXn
n + ε

• Y - response variable X - explanatory variable

• ε - residual error, to cover unexplained information, assumed to be normally distributed with mean of 0 
and δ2    

• α and β are intercept and slope respectively, to be determined at CI = 95%

• N – sample size

• OLS regression computes values of α and β that best fit the response by minimizing sum of squared errors (assuming 
linearity and homoscedasticity)

where ε ~ N (0,δ2)



Assumptions of Linear regression models

• Linearity (sensitive to outliers & data inaccuracy)

• Multivariate normality

• Little or no multicollinearity & singularity

• No auto-correlation

• Homoscedasticity

• Prefers large response variable (20:1)



Normality

• histogram and fitted normal curve

• QQ plot 

• Partial residual plots

• Kolmogorov-Smirnov test (less powerful)

• Shapiro-Wilk test

• Anderson-Darling test



Linearity

• Linear relationship between response and predictors 
• bivariate scatterplots



Multicollinearity and singularity

• Multicollinearity – strong correlations between (or among) predictors

• Singularity – when predictors are perfectly correlated, that is r = 1.0

• Effects: bias predictions

• Solutions: remove some variables or factor analysis

• Detected with the following tests
• Correlation matrix (correlation values >1 indicates multicollinearity)

• Tolerance measures: T = 1 – R2 (T < 0.1 indicates multicollinearity)

• Variance inflation factor: VIF = 1/T (VIF >100 indicates multicollinearity)

• Condition index (values ≥10 indicates multicollinearity)



Autocorrelation

• There is no statistical independence among residuals: 

y(x + 1) = y(x)

• Detected by
• Scatter plots

• Durbin-Watson’s d test: d values > 2.5 indicates autocorrelation



Assumptions: Homoscedasticity
• Data are homoscedastic if the residuals plot is the same width for all 

values of the response variable

• Detected by: 
• Scatterplot 

• Goldfeld-Quandt test



Transformations

• Moderate deviation: square root 
transformation

• Substantial non-normal: log 
transformation

• Severe non-normal: inverse 
transformation

• Negative skew: data reflection before 
transformation

• Heteroscedasticity: Use general least 
squares

• Non-linear: non-linear least squares or 
MLE

http://rogeriofvieira.com/wp-content/uploads/2016/05/Data-Transformations-1.pdf

Transformation should be considered during model 
interpretations



Model types

• Parametric: strong parametric assumptions. Average change in 
response variable is proportional to change in predictor 
variable- LMs, GLMs

• Non-parametric: no assumptions on relationships among 
variables- kernel smoothing

• Semi-parametric: general assumptions, such that relationships 
among variables are not restricted to any shape – additive 
models, GAMs. 



Additive Models

• Developed by Stone (1985)

• Estimates additive approximation to multivariate 
regression function

• Advantages:
• Avoids “curse of dimensionality” by using univariate

smoother

• Individual terms estimates explain relationship among 
variables 

https://support.sas.com/rnd/app/stat/topics/gam/gam.pdf



Generalized Additive Models (GAMs)

• GAMs (Hastie & Tibshirani 1986, 1990) are semi-parametric extensions of 
GLMs, only making assumption that the functions are additive and the 
components are smooth

• GAMs have the ability to deal with highly non-linear and non-monotonic 
relationships between the response and explanatory variables

Their mentors, at Stanford, 
Drs. Nelder and Wedderburn
developed GLMs



Etymology – what’s in a name?

• From Italian word “gamba”

• In those days, it is a slang for a person’s leg, 
especially an attractive woman’s leg



Linear Regression Models

• Y - response variable X - explanatory variable

• ε - residual error, to cover unexplained information, assumed to be normally distributed with mean of 0 
and δ2

• α and β are intercept and slope respectively, to be determined at CI = 95%

• N – sample size

Recall…

Y = α + β1X1 + β2X2 + … + βnXn + ε



When to use GAMs

• When assumptions cannot be made on specific link function for error 
distribution

• Non-linearity in partial residual plots may suggest semi-parametric modeling

• Priori hypothesis or theory suggest non-linear or skewed relationship among 
variables

• Shape of predictor functions is determined by the data (Data speak for 
themselves!!)



Generalized Additive Models
• Expressed as: 

• Y = α + f(X) + ε where ε ~ N (0,δ2)

• Where βX are replaced with the smoothing curve f(X) which is not 
defined by an equation, but can be predicted from the model



What GAMs do to your data?
• Separate each predictor into knots, k (sections)

• Fitting of data in each section independently using low order polynomial 
or spline functions

• Adds functions of all knots to predict the link function (smoothing): that’s 
why it is called “additive” model

• Smoothing of knots is done by functions in “loess” and “splines” 
depending on R package used

• Model fitting is based on likelihood (e.g. AIC scores)

http://plantecology.syr.edu/fridley/bio793/gam.html



Uniqueness of GAMs
• A unique aspect of generalized additive models is the non-parametric 

(unspecified) function f of the predictor variables x

• Generalized additive models are very flexible, and provide excellent fit 
for both linear and nonlinear relationships (multiple link functions)

• GAMs can be applied normal distribution as well as Poisson, binomial, 
gamma and other distributions…

• Regularization of predictor functions helps to avoid over-fitting



Advantages and application of GAMs

• Very powerful for prediction and interpolation

• Highly used in SDMs and ENMs (Elith et al. 2006)

• Analogous to hinge feature of maxent algorithm (Phillips et al. 2006)

• Building optimization models

• Comparatively GAMs shows lower AIC scores and explained higher 
deviance than GLMs

• Applied in Genetics, epidemiology, molecular biology, air quality and 
medicine (Dominici et al. 2002)

http://plantecology.syr.edu/fridley/bio793/gam.html



Packages that implement GAMs in R

• gdxrrw (can read or write GDX files)

• mgcv

• gam (old version of mgcv) – requires “splines” package

• mda – “bruto” function

• gamstools



Basic example

attach(ozone.data) 

pairs(ozone.data, panel = function(x, y) { 
points(x, y) 

lines(lowess(x, y), lwd = 2, col = "red") 

}

Data and code from Crawley, M.J. (2005) Statistics, An Introduction using R, Wiley.

http://geog.uoregon.edu/GeogR/topics/gamex1.html



ozone.gam1 <- gam(ozone ~ s(rad) + s(temp) + s(wind)) 
summary(ozone.gam1)

“s” is the smoother function 
added to the covariates

http://geog.uoregon.edu/GeogR/topics/gamex1.html

Significant effect shows evidence 
of non-linear relationship



plot(ozone.gam1, 
resid = T, pch = 16)

http://geog.uoregon.edu/GeogR/topics/gamex1.html



wt <- wind * temp 
ozone.gam2 <- gam(ozone ~ s(temp) + s(wind) + s(rad) + s(wt)) 
summary(ozone.gam2)

http://geog.uoregon.edu/GeogR/topics/gamex1.html



plot(ozone.gam2, resid = T, pch = 16)

http://geog.uoregon.edu/GeogR/topics/gamex1.html

GAMs has been reported not 
to handle interactions very 
well



To investigate how community diversity (measured by Shannon’s Index) 
is influenced by environmental variables like water quality and 
sediment

Another example with more functions…



Getting started

Data set collected from 303 stations in 
estuaries, bays, and tidal rivers located in the 
Virginian Biogeographic Province (Cape Cod 
MA to Cape Henry VA) by the U.S. 
Environmental Protection Agency’s 
Environmental Monitoring and Assessment 
Program



Variables

Parameters collected include: dissolved oxygen (DO), 
estuary strata, pH, salinity, temperature, 
fluorescence, depth, photosynthetically active 
radiation [PAR] (mE/m2/s), density and frequency of 
fish diversity, total organic carbon (TOC) and 
transmissivity.



GAM fitting
Here, k is specified



Commands

• Independent (i.e., additive): s(x1) +s(x2), ... Where x1 and x2 are covariates 
that the smooth is a function of.

• Interaction: If covariates are on same scale: s(x1, x2)..., for example, 
longitude and latitude (use isotropic smoothing): s(LON, LAT, k = 25). If 
covariates aren’t on the same scale: te(x1, x2, ...) formulation of tensor 
product smoothers

• Removing the s() from a term: x1 + x2,... removes the smoother, and it 
effectively becomes a linear component.

• Knots, k: specifies the dimension of the basis function used to represent 
the smooth term (also called smoothing parameter, λ or α)



AIC = 523.2



plot(G1)



Using gam.check function, 
we check how k selection 
fits the predictors: is it too 
low or too high?

gam.check or qq.gam
produces residual plots



K selection and overfitting

• If α is too large, we run 
risk of underfitting, and if 
α is too small, overfitting
can occur.

• Trade-off in bias (in-
sample error) and variance

• Curves with less variance 
are good for prediction

http://multithreaded.stitchfix.com/blog/2015/07/30/gam/



Smoothing Parameter (λ, k or α)

• There are different methods used to select k:
• Cross-validation methods (found in R package mgcv)

• Cross-validation (CV)

• Generalized Cross-validation (GCV) 

• Unbiased Risk Estimator (UBRE)

• Likelihood Methods
• Restricted Maximum Likelihood (REML)

• Maximum Likelihood (ML)

Explore smooth.terms in “mgcv” package for thorough explanations



How to deal with over-fitting in GAMs

• Model selection with AIC or BIC

• Simple models vs. complex models: curse of dimensionality

• Predictor selection: backward or forward

• Cross validation: 4 or 5-folds (training data)

• Regularization: penalize sources of over-fitting

• Reduce feature space using tools like PCA

• Use bagging (bootstrap aggregation)

• Iterative modelling and play around with k

https://www.quora.com/How-can-I-avoid-overfitting



Iterative modelling until you produce the best fit and optimal k



Degrees of Freedom (df or K’)

• Df is equal to the number of parameters needed to produce the curve, and 
is calculated by:

• Df = number of knots – 1

• The – 1 part is caused by identification constraint which ensures that all 
possible predictions from every smoother included in GAM equal to zero

• We use effective degrees of freedom (edf), which is inversely linked with λ, 
to compare smoothers

• High edf (≥8) means that the curve is non-linear (low λ), edf = 1 is a straight 
line (high λ)



Very useful resources

• https://stat.ethz.ch/R-manual/R-
devel/library/mgcv/html/summary.gam.html

• http://multithreaded.stitchfix.com/blog/2015/07/30/gam/

• https://support.sas.com/rnd/app/stat/topics/gam/gam.pdf

• http://plantecology.syr.edu/fridley/bio793/gam.html

• http://geog.uoregon.edu/GeogR/topics/gamex1.html

• https://rpubs.com/ryankelly/GAMs


